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Abstract
The HiRES beamline at Lawrence Berkeley National Lab-

oratory (USA) is a state-of-the-art compact accelerator pro-
viding ultrafast relativistic electron pulses at MHz repetition
rates, for applications in ultrafast science and for particle
accelerator science and technology R&D. Using HiRES as
testbed, we seek to apply recent developments in machine
learning and computational techniques for machine learning-
based adaptive control, and eventually, a full control system
based on global feedback. The ultimate goal is to demon-
strate the benefits of such a suite of controls to UED, in-
cluding increased temporal and spatial resolution. Concrete
steps toward these goals are presented, including automatic,
model-independent tuning for accelerators, and energy vir-
tual diagnostics with direct application to improving UED
temporal resolution.

INTRODUCTION
Because of the complexity of accelerators and their nat-

ural parameter movement, both in the short and long term
(hereafter, jitter and drift, respectively), accelerators could
see major improvement from machine learning (ML). The
application of ML has been shown to solve or mitigate a
plethora of accelerator control and diagnostic problems, for
example, for navigating efficiently the multi-dimensional
parameter space to find control set points [1, 2], for inverting
a large parameter space to make a parasitic diagnostic [3,
4], or for non-destructive virtual diagnostics [5, 6]. Fur-
ther, ultrafast electron diffraction (UED) has benefited from
ML-based static models and virtual diagnostics [7, 8]. The
advantages of static ML models are incontrovertible, but
they have limits. For example, it is an open question as to
how an optimal ML-based control system should treat a sys-
tem when parameter drift brings a the state of the machine
outside the training set [9]. At HiRES [10], a state-of-the-
art MHz-class UED facility with short, high 6-D brightness
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beams, a model-independent optimization method is detailed
for dealing with this case. Further work is shown to apply
time of arrival virtual diagnostics to increase the short- and
long-term stability of the already-state-of-the-art stability at
HiRES to the 10−4 level and below. Such work will make
up the building blocks of an adaptive control and global
feedback system, with application to UED measurements.

Figure 1: The HiRES beamline, from [10].

INITIAL EXPERIMENTAL TESTS OF
ML-ENHANCED OPERATIONS

The ultimate goal is to demonstrate the benefits of such
a suite of controls to UED, including increased temporal
and spatial resolution. The inital experimental results, show-
casing the potential for enhanced stability and autonomous
operations, are shown.

Adaptive Control
Extremum seeking (ES) [11–13] is a powerful, model-

independent optimization routine that can be applied to op-
timize quickly and control particle accelerators. It has myr-
iad uses for particle accelerators, including optimizing an
electron beam via automatic tuning of accelerator parame-
ters [14] to tuning the latent space of a convolutional neural
network-based digital twin of the accelerator to make it more
robust to drifting parameters [9]. This work seeks to com-
bine these approaches to build a tool for adaptive, on-line
control of accelerators.

Often, when operating an accelerator, it is necessary to
change modes of operation. At HiRES, ES was demonstrated
to be able to follow a moving cost function. In this example,
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data was taken on VS2 (as shown in Fig. 1). The quadrupoles
in Q1 were the parameters on which ES was optimizing. To
find a starting point, a coarse grid quadrupole scan was
performed and interpolated using a four-layer feed-forward
neural network. Inputs were the three quadrupole settings.
Outputs were the root-mean-square transverse beam sizes.
Minimization of the NN of the following cost function was
performed:

𝑓 (𝑞1, 𝑞2, 𝑞3) = |𝑥𝑟𝑚𝑠| + |𝑦𝑟𝑚𝑠| + |𝑥𝑟𝑚𝑠 − 𝑦𝑟𝑚𝑠| (1)

to find the optimal quadrupole settings to make a small,
round beam. Using the resultant point as a starting point, a
sinusoidally varying cost function was introduced, as shown
in Fig. 2. As can be seen, ES keeps the cost function low by
varying the beam size as necessary.

Figure 2: ES minimizing a variable cost function: RMS
beam sizes and corresponding targets. Inset: cost function
minimization.

Another situation that often requires operator expertise is
the compensation of large parameter drifts. In fact, severe
enough drifts for a static, ML-based system will require op-
erator intervention, if the system drifts outside of the range
of the training set. As a trial, at HiRES, such a severe drift
was induced by moving upstream parameters and was com-
pensated by means of the ES algorithm. The data for this
experiment were acquired using a PI-MAX 4 intensified
camera at approximately 2 Hz on DD (see Fig. 1). The sec-
ond quadrupole of the first quadrupole triplet in the dogleg
(Q1 in Fig. 1) was varied in a sinusoidal pattern. As can
be seen from Fig. 3, ES was able to keep the cost function
(Eq. 1) minimized by only varying the three quadrupoles in
the second triplet. The nominal case of keeping the three
quadrupoles constant is also shown. It is worth noting that
beam sizes in the both dimensions remained small, so long
as the rate of change of the drift was sufficiently small.

ES is shown to be a powerful tool for automatic, model-
independent optimization of a changing system, in two cases:
1) if the system needs to change, and 2) if the system changes,
but the objective stays the same. As such, this will be a
powerful building block for a ML-based control system if
the system changes outside the training of the model.

Figure 3: ES minimizing a static cost function (Eq. 1)
in variable, drifting conditions. Top: Cost function with
and without ES feedback. Middle: RMS beam size in y-
dimension with and without ES. Bottom: RMS beam size
in x-dimension with and without ES. Note that the feedback
does not sacrifice beam size in x to make y smaller.

Increasing Stability Beyond State-of-the-Art
Beam stability is critical to consistent and ideal beam

operation. For example, for UED, the temporal resolution
of the pump-probe experiment is

𝜏 = √Δ𝑡2𝑒− + Δ𝑡2𝑙𝑎𝑠𝑒𝑟 + Δ𝑡2𝑗𝑖𝑡𝑡𝑒𝑟 + Δ𝑡2𝑉𝑀, (2)

where Δ𝑡𝑒− is the electron bunch length, and Δ𝑡𝑙𝑎𝑠𝑒𝑟 is the
laser pulse length. These quantities can be reduced using a
bunching cavity and laser compressor, respectively. Δ𝑡𝑉𝑀
is the velocity mismatch term, which can be neglected for
thin samples. Δ𝑡𝑗𝑖𝑡𝑡𝑒𝑟 is the time-of-arrival jitter between
the laser pulse and electron bunch, which can be reduced
using feedback methods and what this work seeks to reduce
further.

HiRES already has near state-of-the-art stability, which
approaches Δ𝐸/𝐸 stability of 5𝑥10−5 at short time scales,
when feedback is turned on, thanks to the 102 MSPS FPGA-
enabled feedback. Drifts on the order of minutes to hours,
however, inflate the overall relative energy variation to ap-
proach 4𝑥10−4. In general, it is desired to remove both jitter
and drift, but different models for different timescales may
be required.

The unknown aspects of parameter drift make for an ideal
case for a non-static model; sparse models, where time in-
formation is not encoded in the model, may not perform
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well in a case that is dominated by such a drift. Time series
analysis is a field that has applications to changing systems,
from scientific (e.g. [15, 16]) to stock markets (e.g. [17,
18]). In time-series analysis, future targets are predicted by
present and/or past predictors and the order matters. The
decision as to whether to include predictors from the current
shot is dependent on multiple factors (see Fig. 4), including
prediction speed, and prediction accuracy without including
the current shot.

Figure 4: Left: only past predictors (gray) are used to predict
the present target (green). Right: Present predictors are
included in the prediction of the present target.

Another consideration is whether to use past targets in
the prediction of the next target. This can be particularly
helpful in the case where unknown parameter drift is driving
a change that is not visible in the predictors. However, for a
virtual diagnostic, in the testing set, previous measurements
of the target are not available. One technique is to include
previous predictions from the virtual diagnostic in the next
prediction (See Fig. 5).

Figure 5: Left: training dataset where past predictors and
measurements (gray) are used to predict the present target
(green). Right: Testing dataset where past predictions re-
place measurements where necessary (blue).

As a first test, sparse prediction of beam x-position on
VS2 in the dogleg (see Fig. 1) was attempted using multiple
linear regression. The final 10% of shots were held in reserve
for a test dataset. See the inset of Fig. 6 for the results of
the regression. Note that on an hours-long timescale, the
RMSE in the test dataset is more than a factor of two smaller
than the fluctuations with the hardware feedback turned on.

The virtual diagnostic uses two cavity probes (amplitude
and phase), the forward (amplitude and phase) and reverse
(amplitude and phase) RF power, the laser phase and the
laser position on a virtual cathode camera to predict the
position on VS2.

Due to data save rates and camera acquisition times, RF
waveforms and beam images are acquired at 1 Hz, down-
sampled from the high repetition rates of the HiRES facility.
Extra care must be taken to ensure that the downsampling
results in synchronized data (i.e. the RF and camera shots
must align). Further, alignment on the 1 Hz level must also
be checked; save delays can exceed 1 second.

Because of the stable nature of a CW-type gun, multiple
beams can be produced from the gun for each RF pulse, at
the laser repetition rate of 250 kHz. Considering the signal-
to-noise ratio of the images, up to 10 beams were averaged
for each image. These beams are each only 4us apart, and
even short-term jitter is expected to be on on a timescale
longer than 100us, given the quality factor of the gun.

Figure 6: Linear regression prediction with hardware feed-
back off.

The 10−4 RMSE shows much potential for improving sta-
bility; one could reduce the overall temporal jitter using this
method: 1) by using the virtual diagnostic for feedback or
2) for UED, by using the virtual diagnostic to order shots by
time of arrival. Improved modeling, time-series prediction
and reducing noise in measurements is planned and promises
even better results.

CONCLUSION
In this work, concrete steps toward a novel adaptive con-

trol and global feedback system with direct application to
UED are presented. First, such a control system will need
to have an automated, model-independent feedback system
robust to changes that bring the system outside of the train-
ing set. ES is shown to perform adequately for that purpose.
Second, the already state-of-the-art energy stability is shown
to be able to be improved using simple, linear regression-
based virtual diagnostics. These virtual diagnostics will be
incorporated into such a novel control system for feedback.
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