13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing

Abstract

Tracy 3 — was implemented by the 3rd author by pursuing
a first principles approach, aka Hamiltonian dynamics for an
on-line model to guide the ALS and LBL comissioning in the
early 1990s. With its origin as a Hamiltonian based pascal
online model used 90 — it is the core of today’s accelerator
tool box. These Hamiltonians have not been changed. Soft-
ware design has evolved since then: C++ and in particular
its standardisation C++11 and C++2xa. In this paper we out-
line our strategy of modernisation of tracy: reorganisation
of the beam dynamics library in cleanly designed modules,
using well proven open-source libraries (GSL, armadillo)
and so on. Furthermore, Python and Matlab Interfaces based
on modern tools are being pursued. We report on the in-
terface design, the status of modernisation. This project
has been renamed to thor-scsi-lib and is available at Github.
Collaboration’s welcome.

INTRODUCTION

The Helmholtz Zentrum Berlin is looking into mod-
ernising and upgrading its own synchrotron light source
BESSY II next to the one it operates on behalf of PTB, the
light source MLS. These will now transit to a 4" and 3%
generation light source. In parallel the existing light sources
BESSY II and MLS are constantly upgraded. These up-
grades require proper tools for modelling these accelerators
for predictable results.

Software concepts, introduced in the sixties (e.g. at Xerox
Palo Alto with the development of Small Talk) are now being
readily available in commonly spread languages: C++, in
particular in its form of C++11 or Python. Furthermore
interfacing between these languages simplify developing
flexible user interfaces.

Tracy in its different implementations has been used to
guide the control of the non-linear dynamics for robust de-
sign for predictable results for [1] ans the beam dynamics
model — with related controls algorithms — was also used for
on-line models for e.g. [2]. The beam performance predic-
tions of Tracy gave sufficient confidence that MAX IV was
proposed and funded [3]: a machine that has revolutionised
the synchrotron light source landscape by introducing sev-
eral paradigm shifts [4]. The code base of Tracy, however,
was always adapted to the different project needs; essentially
by a solo effort. Project dead lines prevented to modernise
the code base and update it.

BESSY II is providing a digital twin with a “numerical
engine” based on the Hamiltonian framework already pro-
vided by Tracy [5]. Given that the modernised software
architecture & code base has a significantly changed in-

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

@ 918

ISBN: 978-3-95450-227-1 ISSN: 2673-5490

doi:10.18429/JACoW-IPAC2022-TUPOST029

SMALL TALK ON AT

P. Schnizer, W. S. Khail and J. Bengtsson
Helmholtz-Zentrum Berlin, BESSY, Berlin, Germany

terface the project name was changed to Thor Scsi. The
code is available at https://github.com/jbengtsson/
thor-scsi-1lib. In this paper we outline the main changes
that the code base underwent. .

FOUNDATIONS

Thor Scsi is based on the traces of Tracy 2 and Tracy 3.
It is “self consistent”: i.e. based on an Hamiltonian for-
mulation and it is symplectic. The same Hamiltonian and
integration method are used for tracking or computing the
global properties of the lattice: e.g. linear optics, radiation
effects and driving terms; engineering tolerances for a re-
alistic lattice are consistent: e.g. the effects of magnetic
roll angles studied in particle tracking will also effect the
calculated vertical emittance. The charge of the tracked par-
ticles can be defined at compile time: it defaults to electrons.
Mathematical details are given in [5].

UPGRADED CODE BASE

At the start of the refactoring the code base was still a
result of the procedural programming paradigm. So the
classes were redesigned. Each element can be seen similar
to a LEGO block (see also Figure 1). Two coordinate sys-
tems are used: a left handed global coordinate system [5]
and a left handed local one. Apart from the drift type, all
elements are calculating in local coordinate space. These
coordinate transformations are handled by implementing the
Euclidean group in delegates of the classes “LocalGalilean”
or ““LocalGalileanProt”. The first transforms from global
to local coordinates by a general rotation and translation,
while the 2" to the magnet’s natural local coordinates, which
generates the horizontal edge-focusing for dipole magnets.

The later one not only translated the global to local by
location and translation but furthermore allows handling a
non sector bend magnet . Thick lenses are implemented
here as Drift-Kick-Drift sequences. Here the kick element
uses a field interpolation object to obtain the strength of the
magnetic field at the particle location. Thus the magnetic
field representation is not limited to solely Taylor expansion
or Beth’s representation [6] but any 2D field representa-
tion (expansion to higher dimensions is considered to be a
straightforward extension) .

At the current stage only part of the elements existing
in Tracy have been ported to Thor Scsi, in particular: drift,
marker, beam position monitor, magnetic multipole (dipole,
quadrupole, sextupole), cavity. Radiation effects are dele-
gated to registered objects: thus the user has full control for
which elements radiation shall be computed. Tracking or
global parameter computations are implemented propagat-
ing a state space object through the beamline elements: a
phase space floating point vector for tracking, or a truncated

TUPOST029 MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools



13th Int. Particle Acc. Conf.
ISBN: 978-3-95450-227-1

thor_scsiz:elements
=DriftType

IPAC2022, Bangkok, Thailand
ISSN: 2673-5490

thor_scsi:zelements
fiCavityType

JACoW Publishing
doi:10.18429/JACoW-IPAC2022-TUPOST029

thor_scsizelements

BendingType

g thor_scsizelements thor_scsirelements
or_scsizcoresiglemype | slocalGalilean “MarkerType

thor_scsizelements
“BPMType

thor_scsitelements
s:LocalCoordinates

thor_scsizelements

=OctupoleType

thor_scsizelements thor_scsizelements
::LocalGalileanPRot iFieldKickAPI

thor_scsiz:elements thor_scsiz:elements ther_scsi:elements
“FieldKick “MpoleType s:ClassicalMagnet

thor_scsizelements
::QadrupoleType

thor_scsizelements

s:SextupoleType

Figure 1: Class hierachy used within Thor scsi.

power series object for global property computations. An
observer can be registered to each element: thus the user
can inspect after each pass the properties the state space
properties at entrance or exit.

The lattice parser of FLAME is reused here to build the
abstract syntax tree. The elements are then instantiated by a
factory: here FLAME’s code base was adapted to Thor scsi
needs.

Python Interface

Many different scientific computational tools have been
implemented in the python language: thus an interface was
considered mandatory. Here Thor Scsi uses pybind11 [7]
for providing a Python interface. It was found that its design
turns wrapping C++ objects to nearly a “configuration task”.
Furthermore objects managed by C++ smart pointers can
be handled transparently: thus user can now exchange the
field interpolation object of the field kick. So it is quite easy
for the user to swap multipole objects or implement a field
provided by a nonlinear kicker [8] or a classical copper based
telephone transmission cable.

Next steps will focus on making element handling more
flexible and on simulations for the impact of engineering
tolerances on the performance of the system. Propagation
or tracking could be seen as applying a sequence of filters
on a phase or state space. Thus adding an element should
be as straight forward as inserting an element to a sequence.
Given that the accelerator object is using a list object of
C++’s standard template library (STL) this will be straight
forward to implement: only some tweaking is required to
keep consistently with other objects internal to the accelera-
tor object, which provide further convenient handling to the
user: e.g. simple functions to find elements with the same
name in a consistent fashion.

Robust Design Studies

Any practical lattice design must be validated that it can
deliver required performance parameters given the accuracy
that can be obtained during manufacturing. These studies
are typically performed using the distribution of different
design parameters as being forecast during the design of the
different elements or by the variation of these parameters
obtained during manufacturing follow up.

Typically different sets are generated using a pseudo ran-
dom number generator and the distribution factors. Thus
the settings can be replayed at a later stage given that the
pseudo random generator is called for the same sequence of

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

parameters as before. Design studies however will first con-
centrate on one set of parameters (e.g. alignment tolerances)
and later on others (e.g. main magnet strength).

Therefore these design studies are supported by “com-
mands” in the following manner:

1. commands that describe a random distribution

2. commands that will apply a variation to a given property
of the element

The user thus creates a sequence of command objects that
describe the random distribution to be applied to the differ-
ent properties. Provided machinery allows converting the
distribution commands to a set of deterministic commands
using a user supplied random number generator. This give
the user full control on creating the distribution next to the
precise set of property changes that will be applied to the
accelerator. Simple functions will be provided for common
tasks.

This two stage approach allows separating the distribution
description from the actual sample. Furthermore as long as
the sequence of commands describing distributions sequence
is only extended at its end, the sequence properties can be
replayed. The user still can filter out commands, that should
not be applied during this part of the study.

MODERNISING CODE BASE: LESSONS
LEARNED

Recommendation

Many scientific code bases of today have been used for
decades. The authors assume that also other frequently used
codes have not been actively maintained to follow more
modern language or software engineering standards. This
section is split up in a part that first describes how the this
code modernisation would be conducted if done again. Then
we describe how we did it. We hope this comparison is
helpful for any reader facing a similar issue.

First recommendations address topics to cover before start-
ing: definition of target and basis. The target should address
why the code base is upgraded and what it should provide
afterwards (e.g. conforming to some language standard, fol-
lowing certain design patterns). Together with this step it
is worthwhile to define the start basis: i.e. the particular
version, branch or similar of the different existing code bases.
A cross check with the original author(s) comes in natural
and can provide insights beyond the existing documentation.

TUPOST029
919

©= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



13th Int. Particle Acc. Conf.
ISBN: 978-3-95450-227-1

During this process it is recommended to review which parts
of the code base could be today provided by well written,
well documented, existing libraries. This step should be
rounded up with a search for an appropriate automated doc-
umentation tool: this comes in handy for the next steps as
typically documentation tools provide also “bird eyes” view
of the code base and its design.

Second step should address refactoring preparation: it
should define a work plan which allows identifying which
steps will require “a rip apart and reassembly” of the code
base; this will be motivated further below. Furthermore the
build and test system should be investigated: these tools will
define the turn around time of any single later step. As these
will be run frequently, their upgrade should be considered
rather early in the refactoring process. Parallel to that test
bases should be implemented: even if these are not full
functional test these could be implemented as “total function
test” and can be used as “safety warnings” to recognise if
code refactoring broke some rather typical use case.

Then recommendations would be to start refactoring with
an upgrade of the code base to a modern language standard
as far as feasible in a straight forward manner (e.g. for
C++ reducing name space pollution using the name-space
“std::” explicitly, moving towards modern input output).
Recommendations are to limit the code changes to the ones
that still can be checked with the available test case. The idea
is that language fixes will not increase the number of code
lines the following major changes will touch. Furthermore
even if the next steps are not executed, the available code
base will be in a better shape than before.

After the above steps have been completed recommenda-
tions would be to start with the change that is considered
the largest intervention to the code base or to its core. It is
recommended that the full function test is executed after this
change, even if it requires a compatibility layer. Target is
to be able to run as many original programs and tests that
show that the code is still producing the same results are
obtained as original code. This will build confidence that the
refactoring did not introduce major bugs. The other changes
are advised to execute in a similar manner.

As soon as the major upgrade is finished recommendations
would be to distribute it to as many friendly users as possible,
even or in particular if the API has not stabilised: this will
give feed back on the achieved upgrades and help discovering
remaining bugs.

How We Did It

In our case the start was a code base that was originally
implemented in Pascal. It was then machine translated to
C and latter transformed to a C++ library. This library was
then used and adapted for a considerable time span.

Upgrade started that one of the authors replaced C structs
with STL objects. The build system was improved for speed
up. Language was modernised, but not consistently: these
updates happened then during the large interventions: thus
more code lines than necessary were touched at this step,
which made bug search more tedious.

TUPOST029
@ 920

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

IPAC2022, Bangkok, Thailand
ISSN: 2673-5490

JACoW Publishing
doi:10.18429/JACoW-IPAC2022-TUPOST029

First refactoring was introducing class hierarchy (see
Fig. 1) followed by replacement of the hand written parser
with FLAME’s one. Boost based unit tests were added in
parallel. Cross checks were made to verify that the code
produced the same output as the original code.

During the last step a Python interface was implemented
using pybind11. This revealed requirements that Python had
to the C++ code base. Furthermore one could interact and
explore interface design on a much higher level.

A New Backend for AT?

AT is commonly used for evaluating the performance of
synchrotron light sources; it’s core is based on Tracy 2 code
base and provides a Python interface. The code base above
could be used as modernisation starting point for AT’s code
base. A transition to matlab’s C++ API could be worthwhile
at this step too.

AT allows propagating many particles at once utilising
today ubiquitous parallel processing features: similar func-
tionality can be provided using C++’s templated implemen-
tation of the element’s propagate method: thus combining
this functionality in a single object.

CONCLUSION

Thor Scsi is a refurbished modernised code base of the
venerable Tracy, which has been used as design tool for vari-
ous light sources or back end for online models. In this paper
the main changes and concepts ere highlighted next to fur-
ther steps to be implemented. Main changes are separating
propagation from field interpolation and delegating radiation
calculation to dedicated classes. A fully transparent Python
interface is provided using pybind11. The authors welcome
any collaborations.

REFERENCES

[1] J. Bengtsson, “The sextupole scheme for the swiss light
source,” Paul Scherrer Institute, Tech. Rep., 1997, https:
//ados.web.psi.ch/slsnotes/s1s0997.pdf

[2] J. Bengtsson and M. Meddahi, “Modeling of beam dynamics
and comparison with measurements for the Advanced Light
Source (ALS),” in 4th European Particle Accelerator Confer-
ence, London, UK, 27 Jun - 1 Jul 1994, 1994, pp. 1021-1023,
https://cds.cern.ch/record/270082

[3] S.C.Leemann et al., “Beam dynamics and expected perfor-
mance of sweden’s new storage-ring light source: Max iv,”
Phys. Rev. ST Accel. Beams, vol. 12, p. 120701, 12 2009,
doi:10.1103/PhysRevSTAB.12.120701

[4] N. Martensson and M. Eriksson, “The saga of MAX IV, the
first multi-bend achromat synchrotron light source,” Nuclear
Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 907, pp. 97-104, 2018, Advances in Instrumentation
and Experimental Methods (Special Issue in Honour of Kai
Siegbahn).

[5] J.Bengtsson, W. Rogers, and T. Nicholls, A CAD tool for linear
optics design: A controls engineer’s geometric approach to
Hill’s equation, 2021, doi:10.48550/ARXIV.2109.15066

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools



13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST029

[6] R.A. Beth, “Complex representation and computation of
two-dimensional magnetic fields,” Journal of Applied Physics,
vol. 37, no. 7, pp. 2568-2571, 1966, doi:10.1063/1.
1782086

[7] W. Jakob, J. Rhinelander, and D. Moldovan, Pybindl 1 — seam-
less operability between C++11 and Python, 2017, https:
//github.com/pybind/pybindl1l

[8] T. Atkinson, M. Dirsat, O. Dressler, P. Kuske, and H. Rast,
“Development of a non-linear kicker system to facilitate a new
injection scheme for the BESSY II storage ring,” in Proceed-
ings of IPAC2011, 2011.

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects TUPOST029
T33: Online Modeling and Software Tools 921 @

@



