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Abstract
The multiple systems involved in the operation of par-

ticle accelerators use diverse control systems to reach the
desired operating point for the machine. Each system needs
to tune several control parameters to achieve the required
performance. Traditional Low-Level RF (LLRF) systems are
implemented as proportional-integral (PI) feedback loops,
whose gains need to be optimized. In this paper, we explore
Machine Learning (ML) as a tool to improve a traditional
LLRF controller by tuning its gains using a Neural Network
(NN). We present the data production scheme and a con-
trol parameter optimization using a NN. The NN training is
performed using the THETA supercomputer.

INTRODUCTION
The LLRF system is in charge of controlling the ampli-

tude and phase of the electromagnetic field that drives super-
conducting RF (SRF) cavities. For facilities like the Linac
Coherent Light Source II (LCLS-II), tight requirements for
amplitude and phase are defined: 0.01% and 0.01 degrees,
respectively [1]. The quality of the X-rays produced by this
type of facilities depends on the quality of the electron beam.

LLRF systems wit a single source single cavity configu-
ration, like the one for LCLS-II, use traditional PI loops for
amplitude and phase control, having a total of 4 parameters
to be tuned. Tuning these parameters takes into account
quantities like the cavity gain and cavity bandwidth, the
closed-loop bandwidth and latency, and the amplitude set-
point. In this paper, we propose a ML-based tuning of the
LLRF controller parameters, which uses a NN to calculate
the optimal proportional and integral gains to minimize am-
plitude and phase errors. We also present a data production
scheme based on simulations and an algorithm for stochastic
optimization [2].

LLRF MODEL AND DATA PRODUCTION
Traditional LLRF controllers for particle accelerators are

PI controllers like the one shown in Fig. 1. It usually con-
sists of a couple of feedback loops: one for amplitude and
one for phase. Therefore, the controller has 4 parameters:
proportional and integral gains for amplitude and phase.
Tuning this parameters is not a trivial task and can be time
consuming for control room operators, specially when the
accelerator has a large amount of SRF cavities (280 SRF
cavities in the case of the LCLS-II). The tuning process can
be automated based on control theory and the desired be-
haviour of the closed-loop, taking into account quantities
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like the cavity gain and cavity bandwidth, the closed-loop
bandwidth and latency, and the amplitude set-point. How-
ever, this automation does not guarantee optimal parameters.
Furthermore, drift in the system parameters would require
to perform characterization of the cavity and the closed-loop
system parameters multiple times.

Figure 1: Simplified diagram of a traditional PI LLRF con-
troller.

In this paper, we propose a tuning process to minimize
the amplitude and phase stability errors, and a NN can be
trained to learn this optimization. In the next subsections,
we explain the cavity model and the simulations of the cavity
field feedback loop.

Cavity Model
A multi-cell SRF cavity can me modeled as a group of

RLC circuits (resonant circuits), each one corresponding
to an eigenmode of the cavity. Figure 2 is the equivalent
RLC circuit of each eigenmode. The differential equations
that describe the electrodynamics of the systems are derived
in [3] and result in the following set of equations:

𝑉 = 𝑆𝑒𝑗𝜃, (1)

𝑑𝜃
𝑑𝑡 = 𝑤𝑑, (2)

𝑑𝑆
𝑑𝑡 = −𝑤𝑓𝑆 + 𝑤𝑓𝑒−𝑗𝜃(2𝐾𝑔√𝑅𝑔 − 𝑅𝑏𝐼), (3)

where 𝑉 is a representative measure of each mode’s energy,
with magnitude 𝑆 and phase 𝜃, 𝑤𝑑 is the detuning frequency
and 𝑤𝑓 is the cavity bandwidth. 𝐾𝑔 is the incident wave
amplitude, which represents the power that drives the cavity,
𝑅𝑔 is the coupling impedance of the beam, and 𝐼 represents
the beam current.

Using this model for simulations and data production, we
have simulated a LLRF closed-loop under different setting
points of RF power and electron beam current. Additionally,
different levels of cavity frequency detuning and measure-
ment noise can be applied to the simulations.
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Figure 2: Cavity’s circuit model of a resonant mode.

Closed Loop Simulations
Following the example of the CMOC code [3], we devel-

oped our own Python code to simulate a feedback LLRF
loop. It consists of a cavity, a power source (a Solid State
Amplifier in the case of the LCLS-II) and a PI controller.
The following perturbations are implemented: beam loading
disturbances, cavity detuning and measurement noise. The
effects of these perturbations in the stability of the cavity
are explain in detail in [4, 5]. It is important to clarify the
cavity detuning model: it is a sinusoidal variation of the
cavity resonant frequency. Notice that the frequency of this
sinusoidal variation represents the frequency of the detuning
source (for example, a pump) and the amplitude represents
the effective detuning of the cavity (for example, 15 Hz of
detuning), which also has units of Hz.

In Fig. 3, the top plot shows a cavity field (blue curve)
reaching the set point (dotted black line) due to the action of
the control signal U (red curve). We can see the saturation
of the power source for the first 12 ms of the simulation,
and the effect of 10 Hz detuning (oscillating at 200Hz) in
the control signal U. We can also see the effect that beam
loading has over the control signal U, when more power is
required when the beam is present (from 15 ms to 25 ms).

The bottom plot of Fig. 3 shows a detail of the cavity’s
voltage signal to see how it is affected by the perturbations:
we see the oscillations due to microphonics, the noise related
to the measurement noise, and an undershoot and overshoot
related to the start and end of the beam. Notice that this plot
starts at 15 ms. The upper and lower limits for amplitude
stability are shown for reference. The magnitude of the
effects related to the perturbations mentioned above is a
function of the control parameters (proportional and integral
gains). In the next section we explain how to optimized this
parameters to minimize the stability error.

CONTROL PARAMETER OPTIMIZATION
The 0-dB crossing of the closed-loop depends on the pro-

portional gain 𝑘𝑝. Figure 4 shows the relation between 0-dB
crossing (and therefore 𝑘𝑝) and the RMSE of the cavity’s
field amplitude. There is an optimal 𝑘𝑝 that minimizes the er-
ror. Applying an algorithm for stochastic optimization using

Figure 3: Top: Simulation of the LLRF closed-loop with
beam loading disturbances, cavity constant detuning and
measurement noise. Bottom: Detail of the cavity’s field.

Figure 4: Relation between 0-dB crossing (or proportional
gain) and RMSE of cavity’s field amplitude.

the Python library Noisyopt, described in [2] and represented
by the following equation:

min
𝑘𝑝

𝑓 (𝑘𝑝) = min𝑥 𝐸[𝐹(𝑘𝑝, 𝜉)], (4)

one can find the optimal value of the gain. In Eq. (4), 𝑓 (𝑥)
represents the RMSE error as a function of the gain, which
cannot be directly evaluated, and 𝐹(𝑥, 𝜉) represents the func-
tion that we can simulate and their dependency on a noise
𝜉. Using the optimization algorithm and the simulations of
the closed-loop LLRF system described above, the results
of the optimization are shown in Fig. 5. The algorithm can
find the optimal gain.
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Figure 5: Optimization results.

ML ARCHITECTURE
A diagram of the ML-based LLRF control system pro-

posed in this paper is shown in Fig. 6. For the optimization
and data production phase, 𝑥0 represents the inputs to the
optimization algorithm and to the training of the ML. 𝑥0
is the cavity detuning, measurement noise, beam current
and amplitude and phase set-points of the cavity’s field. 𝑦
represents the optimal gains calculated by Noisyopt. 𝑥0 and
𝑦 together built the training dataset for the ML. Once the ML
is trained, it will be able to calculate the optimal gains, ̃𝑦,
for conditions not seen before, ̃𝑥0, and the LLRF controller
will use this optimized gains online.

For the optimization and data production phase, and learn-
ing phase, we use the resources of the THETA supercom-
puter at the Argonne Leadership Computer Facility [6]. The
experimental phase should be implemented along with the
LLRF controller in an FPGA, or in an upper level of soft-
ware.

Figure 6: Diagram of the ML-based LLRf control system.

SUMMARY AND FUTURE WORK

Simulations of a closed-loop LLRF system have been
implemented based on the CMOC software engine. An al-
gorithm for stochastic optimization called Noisyopt has also
been implemented to calculate the optimal proportional gain
that minimizes the RMSE of the cavity’s field amplitude.
An ML-based LLRF controller has been proposed. For the
training of the ML, data is produced with the implemented
software for simulations and with the Noisyopt algorithm.
We plan to develop and deploy the proposed ML-based con-
troller to test it with a cavity emulator.
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