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Abstract

Machine learning (ML) methods have found their appli-

cation in a wide range of particle accelerator control tasks.

Among other possible use cases, neural networks (NNs) can

also be utilized for automated beam position control (orbit

correction). ML studies on this topic, which were initially

based on simulations, were successfully transferred to real

accelerator operation at the 1.5–GeV electron storage ring

of the DELTA accelerator facility. For this purpose, clas-

sical fully connected multi-layer feed-forward NNs were

trained by supervised learning on measured orbit data to

apply local and global beam position corrections. The super-

vised NN training was carried out with various conjugate

gradient backpropagation learning algorithms. Afterwards,

the ML-based orbit correction performance was compared

with a conventional, numerical-based computing method.

Here, the ML-based approach showed a competitive orbit

correction quality in a fewer number of correction steps.

INTRODUCTION

Stable electron orbit control is an important task especially

for modern synchrotron light sources. For this purpose, sin-

gular value decomposition (SVD) of the orbit response ma-

trix is a standard numerical tool at storage rings worldwide.

An alternative concept applies machine learning techniques

as an heuristic method, inspired by the pioneering work

done at NSLS/BNL [1]. Since 2018, machine learning (ML)

based orbit correction (OC) methods have extensively been

studied and applied at DELTA [2–5], a 1.5–GeV electron

storage ring operated as a synchrotron light source [6] and

a new facility for ultrashort pulses in the VUV and THz

regime [7, 8].

MACHINE OPERATION

The OC hardware setup of the DELTA storage ring con-

sists of 54 beam position monitors (BPMs) which determine

the position in both orbit planes simultaneously as well as 30

horizontal and 26 vertical corrector magnets (steerers) [9].

The ML methods, which were successfully tested by means

of simulations on a DELTA storage ring OC model, were

applied to the real storage ring.

ML-Data Acquisition

Compared to the uncoupled case in previous real machine

studies [3], now a dedicated data acquisition script randomly

varies all steerer strengths in both planes at once within inter-

vals from typically ±200 mA up to ±500 mA. The interval
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limits are a compromise between risk of beam losses and

minimizing relative measurement errors due to the limited

steerer strength resolution of 2.4 mA. After each perturba-

tion, the steerer strength changes and the emerging closed

orbit differences in both planes are measured, error-cleaned

(e.g., deleting of hardware and software related readout er-

rors) and recorded. The data pool noise level was estimated

to approximately 2% caused by the combined error of BPM

and steerer strength readback accuracies, mainly dominated

by the limited steerer strength granularity.

Weighted Beam Position Monitors
To increase the impact of orbit deviations at more impor-

tant storage ring positions (e.g., synchrotron radiation source

points or the injection region) each BPM can be assigned

with an individual weight factor. With w̃
BPM
x,z as a diagonal

matrix of BPM weight factors, the weighted closed-orbit er-

ror χw
x,z can be evaluated as a scalar quantity for both planes

(x, z) by

χ
w
x,z =








w̃
BPM
x,z · (

−→
∆dx,z + R̃x,z ·

−→
∆Ix,z)










2
. (1)

The goal for an orbit correction algorithm is to minimize

the residual closed-orbit error χwx,z for arbitrary orbit devia-

tions
−→
∆dx,z with respect to any desired reference orbit. The

product of the response matrix R̃x,z and the steerer strength

changes
−→
∆Ix,z in Eq. 1 can be determined by means of a

reverse NN (see Fig. 1). It can also be trained with the exper-

imental data patterns, but now each squared network error

e2
pj
= (oBPM

pj
− tBPM

pj
)2 must be weighted by an individual

BPM weight factor wBPM
pj

as follows:

E
R
mse =

1

P

P
∑

p=1

1

N

N
∑

j=1

w
BPM
pj (oBPM

pj − t
BPM
pj )2 . (2)

The reverse mean squared NN error ER
mse sums up the

squared differences between all numbers of neurons N at

the NN target t and output o for a specific quantity of data

patterns P. Thus, the reverse trained NN, as a representa-

tion of the orbit response matrix R̃x,z, is able to determine

orbit deviations
−→
∆dx,z at all BPMs for given steerer strength

changes
−→
∆Ix,z . Afterwards, the weighted orbit error χwx,z in

Eq. 1 can be minimized using a numerical optimizer, e.g.,

the BFGS Quasi-Newton method [10]. In addition, the opti-

mizer itself has also been replaced by a pre-trained NN. For

this purpose, the optimizer has to pre-calculate the optimum

χ
w
x,z-values for all measured orbit deviations

−→
∆dx,z . These

data pairs again serve as labeled input/target data to train a

dedicated NN as an optimizer substitute.
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Figure 1: Schematic layout of the neural network topology

for a full x,z-coupled orbit correction at the storage ring

DELTA. The input layer represents 54 BPMs for each plane,

fed by measured orbit deviations. It is connected via a ’hid-

den’ layer with the output values for 56 corrector magnets

(HK1-30, VK1-26). The correction considers both trans-

verse coordinates (x,z) as well as their coupling. In total, the

network consists of approx. 17700 connections (red lines,

only partially shown). For reverse training, the input and

output layers are swapped.

Neural Network Training

Since each corrector strength variation normally affects

the beam displacement at all BPM positions in the storage

ring, a fully connected feed-forward neural network (FFNN)

was specified as the NN connection architecture. Thus, NNs

to be trained by the experimental data are composed of three

layers with a total of 272 neurons (108/108/56) and approxi-

mately 17700 weights and biases (see Fig. 1).

The supervised network training was tested with vari-

ous conjugate gradient backpropagation learning algorithms.

Most effective learning was achieved with scaled conjugate

gradient (scg) algorithms [11]. Typical forward and reverse

Figure 2: Supervised NN training, based on a scaled conju-

gate gradient (scg) backpropagation algorithm, with experi-

mental data (blue) and verification of the NN performance

with an additional ’unseen’ validation test data set (green).

training curves for pure training data (blue) and the related

validation data sets (green) are shown in Fig. 2. In both cases,

the network output error is reduced continuously, without

over- or under-fitting issues, mainly limited by the data noise

level. The best forward validation performance with an

Emse-value of 7.3 · 10−4 A2 was reached with no significant

improvement beyond approx. 1600 scg-training iterations

applying a full batch training. The reverse training reduced

the network output error ER
mse to 1.2 · 10−2 mm2 after about

700 iterations. In both cases, the network’s fitness gains ap-

proximately three orders of magnitude compared to the start-

ing values, which indicates sufficient fitness performance.

Hence, conventional NNs are able to learn and generalize the

correlation between orbit deviations and the related steerer

strength variations.

BENCHMARK RESULTS

The performance of the ML-based OC program was

benchmarked against a recently implemented numerical ap-

proach [12, 13] at different comparison terms. The tests

considered actual reference settings, which include the cur-

rently valid reference orbit and the corresponding weight

factors (wf) for all K BPMs in operation. Various arbitrary

steerer-induced orbit errors have been enforced (a–d) in both

orbit planes, respectively (hk/vk). The benchmark results

are compared in Fig. 3 (ML-based) and Fig. 4 (numerical)

separately for each orbit plane.

In addition, typical but not pre-trained sources for orbit

disturbances have been provoked. This includes unmatched

closed orbit bumps (e.g., injection dc-bump), strong sex-

tupole strength changes (SF/SD) or ramping of insertion

devices (e.g., the undulator U250). The benchmark results

Figure 3: Weighted rms orbit error χwx,z for different steerer-

induced (hk/vk) orbit disturbances (a-d) compensated itera-

tively by the ML-based OC program. Due to x,z-coupling,

the provoked deviations appear in both orbit planes. A total

of 18 steps were required to compensate for all disturbances

(a-d). In comparison to Fig. 4, similar final residual orbit

errors are achieved in significantly fewer iteration steps.
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Figure 4: Weighted rms orbit error χwx,z to benchmark the

orbit correction quality and convergence for a conventional

numerical method [12,13]. The correction was performed

iteratively for the same steerer-based (hk/vk) orbit distortions

(a-d) as presented in Fig. 3. In total, 30 steps were required

to compensate for all disturbances (a-d).

Figure 5: Individual ML-based correction steps to compen-

sate orbit deviations caused by different error sources (e-j)

which were not included in the training data sets. Although

these types of error sources were not considered during NN

training, all disturbances (e-j) could be compensated in 26

steps.

are shown in Fig. 5 (ML-based) and Fig. 6 (numerical)

for each plane separately. In all plots, the residual orbit

quality χw
x,z ≔

(

1
K

∑K
i=1

(

wBPM
x,z · ∆x,z

)2

i

)1/2

is scored by the

weighted root-mean-squared value (wrms) over all K BPMs

in both orbit planes (x, z).

As can be seen from the graphs, both OC programs worked

similarly stable and they were able to compensate all en-

forced orbit disturbances without any beam losses. The

ML-based OC needs approximately 2 to 4 orbit correction

iterations to equalize the individually provoked orbit devia-

tions. Even distortions (e–j), which have not trained during

Figure 6: Correction for different scenarios of enforced orbit

deviations (e-j) performed with a conventional numerical

orbit correction program [12, 13]. In this case, in total 33

steps were needed to compensate the same perturbations

(e-j) as depicted in Fig. 5.

supervised learning were compensated with analogous qual-

ity. After each provoked error, the residual weighted orbit

error converged to less than 3 mm, which corresponds to

several ten µm in real beam offset.

In direct comparison, the standard numerical OC method

requires more orbit correction steps to compensate the same

provoked orbit disturbances. The residual weighted orbit

error converged also to less than 3 mm, but overall, in these

benchmark examples, the standard OC version needs in total

63 steps (see Fig. 4 and Fig. 6) compared to 44 steps for the

ML-based implementation (see Fig. 3 and Fig. 5).

SUMMARY

A machine learning-driven orbit correction algorithm has

successfully been implemented at the 1.5–GeV electron stor-

age ring of the DELTA accelerator facility. The achieved re-

maining orbit error is similar to the results of standard SVD-

like correction approaches. In general, ML-based methods

require fewer correction steps which leads to faster orbit

correction convergence. Because ML techniques based on

training with real machine data, this method automatically

incorporates storage ring imperfections (e.g., alignment er-

rors) and non-linearities (e.g., magnetic fringe fields). Fur-

thermore, it has been demonstrated that NNs were also able

to cope with beam disturbances that had not been trained

before. In addition, even changes of BPM offsets, e.g. due

to realignments of individual lattice magnets, can be taken

into account, simply by editing the related orbit reference

data file. Therefore, retraining of the entire neural network

is not required. In general, once successfully trained, the

NN-based application showed high reliability, numerical

stability and robustness.
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