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Abstract

The temporal profile of the electron bunch is of critical

importance in accelerator areas such as free-electron lasers

and novel acceleration. In FELs, it strongly influences fac-

tors including efficiency and the profile of the photon pulse

generated for user experiments, while in novel acceleration

techniques it contributes to enhanced interaction of the wit-

ness beam with the driving electric field. Work is in progress

at the CLARA facility at Daresbury Laboratory on temporal

shaping of the ultraviolet photoinjector laser, using a fused-

silica acousto-optic modulator. Generating a user-defined

(programmable) time-domain target profile requires finding

the corresponding spectral phase configuration of the shaper;

this is a non-trivial problem for complex pulse shapes. Phys-

ically informed machine learning models have shown great

promise in learning complex relationships in physical sys-

tems, and so we apply machine learning techniques here

to learn the relationships between the spectral phase and

the target temporal intensity profiles. Our machine learn-

ing model extends the range of available photoinjector laser

pulse shapes by allowing users to achieve physically realis-

able configurations for arbitrary temporal pulse shapes.

INTRODUCTION

In photoinjector systems, control over the longitudinal

properties of the electron bunch can be achieved through

temporal shaping of the laser pulse temporal profile [1]. Fol-

lowing the temporal shaping concept presented in [2], we

have developed an apparatus for temporally shaping the pho-

toinjector laser pulses at CLARA, shown schematically in

Fig. 1. The input laser pulse is spectrally dispersed by a

transmission grating. A concave mirror one focal length

away from the grating collimates the spectrum and focuses

the laser pulse to a line focus, along which the laser wave-

length varies approximately linearly. A fused-silica AOM is

placed at the position of the focus, and a transducer driven

with an RF waveform at 200 MHz central frequency gener-

ates an acoustic wave in the AOM, which propagates along

the line focus of the laser. The laser pulses are diffracted

from the induced refractive index modulation, and the spec-

tral components are recombined using a second concave

mirror and transmission grating.

To shape the laser pulse temporally, the spectral phase can

be adjusted by varying the temporal phase of the acoustic

wave via the temporal phase of the RF drive wave. The

laser pulses can also be shaped temporally by varying the

temporal amplitude of the acoustic wave; however, as this ap-

proach is lossy, it is necessary to carry out all shaping using
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Figure 1: Schematic of the temporal pulse shaper at CLARA.

only the phase. In order to produce a particular target pulse

temporal intensity profile, we need to find a suitable spectral

phase mask to apply to the shaper. This is non-trivial for

arbitrary shapes, as we require both the phase and amplitude

in either the spectral or temporal domain to fully define the

pulse. However we know only the temporal intensity and the

spectral intensity, leaving the temporal and spectral phase as

unknowns with many potential solutions. The complexity

of real experimental systems poses additional challenges,

for example, there are limitations imposed by the physical

characteristics of the AOM. Modulating the spectral phase

by modulating the temporal phase of the RF wave broadens

the RF spectrum. The AOM has a finite acoustic bandwidth,

and the RF spectrum must remain within this bandwidth for

spectral phase modulations to be physically realisable.

Machine learning approaches excel for complex non-

linear problems such as this. In particular, deep neural

networks are known to be capable of approximating any

function[3], and recent work has demonstrated that such

networks can be used to learn and manipulate spectral, tem-

poral, and shape properties of laser pulses[4, 5]. Recent

research has explored encoding physical laws into machine

learning models with partial differential equations as pri-

ors[6] to reduce the data requirements of these otherwise

data-intensive approaches. This approach has come to be

known as Physically Informed Neural Networks (PINNs)

and can be used to constrain the outputs of deep neural net-

works within physical reality, by encoding properties such

as conservation of energy a priori.

In this paper, we present a PINN for finding the spectral

phase mask required to produce a target temporal intensity

profile in our photoinjector laser pulse shaper, subject to the

physical limitation of the AOM bandwidth. Our approach

both reduces the data requirements of our model and con-
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strains the search space within a physically realisable range.

Thus, we can be confident that predictions of temporal inten-

sity profiles produced by our model will be experimentally

achievable. Using a PINN also increases the speed with

which the required phase mask can be found, compared to

algorithmic and iterative methods.

In addition to the constraints of the physical system, we

can also encode the inherent symmetries of the underlying

physical system. By employing the principles of geometric

deep learning[7], we can choose to exploit those symme-

tries to reduce the complexity of the underlying parameter

space. In particular, we can exploit the translation-invariant

nature of the temporal pulse shape, since the structure of the

pulse signal is our primary concern and pulse timing can be

adjusted without consequence. This guides our choice of

loss function away from the mean squared error functions of

other works towards alternative signal matching algorithms,

such as the Pearson correlation coefficient. This significantly

improves our results by expanding the potential search space.

RELATED WORK

In their paper on applying an iterative Fourier transform

to this issue, Hacker et al.[8] propose an algorithm which

can quickly approximate the spectral phase corresponding

to a particular target waveform. This is done by iteratively

performing a Fourier transform into the spectral domain, cor-

recting for differences between the current and target spec-

trum, and then transforming back into the time domain and

correcting for temporal amplitude differences. This process

is repeated until an adequate match is found. This achieves

results comparable with a genetic algorithm approach but in

a significantly shorter time.

In their work on applying neural networks to predicting

temporal and spectral pulse profiles in optical fibres, Boscolo

et al.[4] demonstrate that supervised models are capable of

learning the complex relationships between temporal pulse

shape and spectral intensity. They also used a neural net-

work to determine the non-linear propagation properties of a

pulse observed at the fiber output and classify output pulses

according to the initial pulse shape.

Though their work concerns spatial shaping as opposed

to the temporal shaping discussed here, Xu et al.[5] demon-

strate that neural networks are again capable of learning to

manipulate laser profiles with an SLM to generate arbitrary

output shapes.

For a more complete overview, see Genty et al.’s re-

view[9].

METHODOLOGY

Using simulated data, we developed and tested a machine

learning model to find the required phase mask to achieve

a particular target pulse temporal profile. The simulated

laser pulses used for training and testing the model have a

spectral intensity with Gaussian shape in wavelength, central

wavelength of 266 nm, and FWHM bandwidth of 1.5 nm.

As pulses in the CLARA photoinjector laser system are tem-

porally stretched in a grating stretcher before entering the

shaper, our simulated unshaped pulses have 8 × 104 fs2 of

spectral phase applied. For our training set, we generate 105

pairs of spectral phase profiles and corresponding temporal

intensity profiles, with a further 103 pairs generated for the

test set. Each pair consists of a spectral phase profile consist-

ing of 2642 samples over 5.78 nm and a temporal intensity

profile of 294 samples over 12 ps.

So we can constrain our model to the physical limits of the

AOM bandwidth, we consider the effect of AOM bandwidth

on the spectral phase mask. Modulating the temporal phase

of the RF drive wave broadens its spectrum; the instanta-

neous RF frequency at a particular point in time is given by

the gradient of its temporal phase at that point. The AOM

bandwidth limits the gradient of the acoustic wave temporal

phase modulation, and consequently the limits on the avail-

able phase modulation per unit length along the acoustic

wave propagation direction are

d�

d�
= ±

�Δ �ac

�ac

, (1)

where � is the phase modulation, � is the spatial coordinate

across the AOM window, �ac = 5968 m s−1 is the acoustic

velocity in fused silica, and Δ �ac ≈ 100 MHz is the AOM

acoustic bandwidth. The change in laser wavelength per unit

length across the AOM window is

d�

d�
≈

Δ�

�
, (2)

where Δ� ≈ 5 nm is the optical bandwidth covered by the

AOM window, and � = 20 mm is the width of the AOM

window. From Eq. 1 and Eq. 2, the limits on the laser

spectral phase gradient are therefore

�� =
d�

d�
≈ ±

�Δ �ac�

�acΔ�
. (3)

For our experimental parameters, �� = ±�/0.015 rad/nm.

To encode this physical limit associated with the AOM

bandwidth into the network, we developed a regulariser

which acts to limit the gradient of the spectral phase profile

to a physical limit of �/0.015 rad/nm, corresponding to a

maximum phase change per wavelength step of �� ≈ 0.153�

rad/step. For the purposes of limiting the gradient over a dis-

crete sampling, we define the discrete gradient as Eq. 4. To

account for the cyclic nature of angular frequency in a differ-

entiable manner, we calculate the gradient by projecting into

the complex plane. We then take the absolute value of the

discrete gradient of the network’s output vector. We multiply

the resulting function by a high-gradient sigmoid function

with an offset of �� to provide a differentiable approxima-

tion of a step function. Since ��(�� � ) bounds between −1

and 1, and the input is between −� and �, we divide �� by

� to arrive at the final definition for the regulariser, shown

in Eq. 5. Note that the first and last elements are masked out

from the difference calculation, since we are not concerned
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with forcing the spectral phase profile to begin and end at 0

rads.

The loss function encodes the translation invariant na-

ture of temporal pulse shaping by calculating the Pearson

correlation coefficient of the target temporal pulse profile

against the temporal pulse profile simulated from the spectral

phase profile output by the network. The simulation code is

made differentiable by the Keras[10] framework, allowing

the training of the network to be guided by the gradient of

the underlying function space. This further encodes physical

laws into the network.

Δ+ ( � ) = �� − ��+1 (4)

1

�

︁
|Δ+ (�

�� (�) ) | ∗ ��( |Δ+ (�
�� (�) ) | − ��/�); � = 100

(5)

The architecture for the network is a simple deep neural

network with three hidden layers using the ReLu[11] activa-

tion function, with batch normalisation between the layers.

The final output layer uses a linear activation function. We

use the Adam optimiser[12] with a learning rate schedule

decaying from 0.001 at a rate of �0.001 per epoch after the

first 100 epochs.

RESULTS

We find that with the application of the principles of phys-

ically informed networks enables the proposed system to

learn to extrapolate appropriate spectral phase profiles for

arbitrary temporal pulse shapes in linear time, which are

both accurate and contain no non-physical phase transitions.

This allows users to specify arbitrary temporal pulse pro-

files and receive an input for the SLM which will provide

that profile within milliseconds, a significant advantage over

algorithmic and iterative methods.

As in other works, we calculate the mean squared error

(MSE) of the output temporal intensity profile against those

in the test set, and find strong agreement (6.4e−3 ± 3.7e−5

MSE over 10, 000 samples). Indeed, our results match sim-

ulation extremely well, as can be seen in Fig. 2. We are also

able to specify a wide variety of target pulse shapes which

are well outside of those described in the test set, and re-

ceive matching physically realisable spectral phase profiles

which generate them well, as in Fig. 3. Without the limita-

tions of the SLM it is possible to achieve very high quality

matches to the target patterns, however these are not physi-

cally achievable since they require spectral phase transitions

well beyond what is physically possible. However, with the

physical limitations imposed by the PINN, we achieve high

quality matches to arbitrary temporal phase profiles which

are physically realisable.

CONCLUSION

By using physically informed networks we can build better

machine learning models which more accurately model the

Figure 2: Randomly selected example from the test set, show-

ing spectral phase mask and spectral intensity (top), and

pulse temporal phase and temporal intensity profile (bot-

tom). The predicted temporal pulse shape is an excellent

match to the ground truth.

Figure 3: Demonstration of solutions found for arbitrary

pulse shapes. In particular note that these are physically

realisable due to the gradient constraint.

reality of the target system. In doing so, we develop a model

for predicting spectral phase profile configurations for photo-

cathode laser at CLARA, to enable arbitrary specifications

of temporal pulse profiles for fine control over the bunch

profile. In future work, we intend to deploy this system on

the CLARA facility to enable fine temporal pulse shaping

and expansion into bunch profile specification, with an eye

toward use in FEL research.
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