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Abstract
Stabilizing beam orbit is critical for advanced synchrotron

radiation light sources. The beam orbit can be affected by
many sources. To maintain a good orbit stability, global orbit
feedback systems (OFB) has been widely used. However, the
BPM thermal deformation would lead to BPM misreading,
which can not be handled by OFB. Usually, extra diagnos-
tics, such as position transducers, is needed to measure the
deformation dependency of BPM readings. Here, an alterna-
tive approach by using the machine operation historic data,
including BPM temperature, insertion device (ID) gaps and
corrector currents, is presented. It is demonstrated at Hefei
Light Source (HLS). The average orbit shift due to BPM
thermal deformation is about 34.5 μm/°C (horizontal) and
20.0 μm/°C (vertical).

INTRODUCTION
Synchrotron radiation source has many advanced charac-

teristics such as high brightness, transverse coherence, good
time structure, etc, which is developed as one of the most
powerful scientific tools over decades [1]. The beam orbit
stability is required to be better than 10% of the beam size
for modern light sources [2, 3]. Many sources could lead
to beam orbit shifts. Global orbit feedback system has been
widely used to suppress them. However, the BPM thermal
deformation would lead to BPM misreading, instead of direct
orbit disturbance, which could not be effectively corrected
by OFB. Significant beam orbit shift due to BPM misreading
has been observed in sources like APS [4], KEKB [5], and
HLS [6].

Dedicated diagnostics is needed to measure and correct
BPM thermal deformation, for example, the work carried
out at HLS [6]. It is a straight forward method and generally
provides good results. However, few downsides are there like
the cost of hardwares and the need of machine study time,
which actually make it difficult for wide implementation. In
this paper, we will present an alternative approach by using
machine learning, which is successfully demonstrated at
HLS-II by predicting effective beam orbit shift accompanied
by direct corrector current. It could be integrated to orbit
feedback system to improve beam orbit stability.

In the following, we first introduce the theoretical model
of beam orbit change due to BPM vacuum chamber thermal
deformation, then a surrogate model built using a neural
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network (NN). Finally results from the surrogate model are
presented.

THEORETICAL MODEL
Thermal effects from synchrotron radiation, parasitic heat

induced by machine impedance and tunnel temperature vari-
ation can cause BPM vacuum chamber mechanical defor-
mation, which leads to its geometric center shift in global
reference coordinate and results in BPM misreading. BPM
reading, ®𝑢, can be written as

®𝑢 = ®𝑅 − ®𝑟, (1)

where ®𝑟 and ®𝑅 are BPM center and beam position respec-
tively in global coordinate.

In principle, BPM center shift does not affect beam orbit
directly, except when OFB is functioning, where the beam
experiences extra kicks from correctors. Accordingly, a
BPM reading changes as,

Δ®𝑢𝑖 = Δ ®𝑅𝑖 − Δ®𝑟𝑖 = ( 𝜕
®𝑅𝑖

𝜕®𝑟𝑖
− 𝐼) · Δ®𝑟𝑖 , (2)

where Δ®𝑟𝑖 is BPM center shift due to heating, Δ ®𝑅𝑖 , beam
position change at BPM due to OFB, 𝜕 ®𝑅𝑖/𝜕®𝑟𝑖 , Jacobian
matrix and 𝐼, a unit 2 by 2 tensor.

With an ideal OFB, beam orbit is corrected back to its
original, it then yields

Δ®𝑢 = (Δ®𝑢1, ...,Δ®𝑢𝑁 ) = 0, (3)
Δ®𝑟 = Δ ®𝑅 |Δ®𝑢=0 = M · ΔΘ, (4)

where ΔΘ is corrector kick strength change, and M is ma-
chine orbit response matrix (ORM), which ideally depends
only on machine optics and is given by

M𝑖𝑘 =
𝜕𝑢𝑖

𝜕𝜃𝑘
=

√
𝛽𝑖𝛽𝑘

2 sin 𝜋𝜈
cos[𝜈(𝜙𝑖 − 𝜙𝑘 + 𝜋)], (5)

where (𝛽𝑖 , 𝜙𝑖) and (𝛽 𝑗 , 𝜙 𝑗 ) are the beta function and phase
advance at position i and k and 𝜈 is the betatron tune.

The Θ only responses to the BPM readings, which de-
pends on the beam reference orbit and real beam orbit change.
The change of reference orbit is caused by the BPM mis-
reading. The real beam orbit shift can be generated by the
gap variation of IDs. The physics model of the corrector
strength can be described as a function of the ID gaps and
BPM temperature by

Θ( ®𝑔, ®𝑇) ≈ Θ( ®𝑔, ®𝑇0) +
𝜕Θ

𝜕 ®𝑇0
Δ ®𝑇, (6)
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where ®𝑇 is the BPM vacuum chamber temperature, Δ ®𝑇 is
the BPM temperature variation and ®𝑔 is the ID gap.

Therefore, beam orbit shift due to BPM thermal deforma-
tion is

Δ®𝑟 = M 𝜕Θ

𝜕 ®𝑇0
Δ ®𝑇 = MNΔ ®𝑇, (7)

where N is the temperature response matrix (TRM) of cor-
rector strength at given ID gaps.

Technically, TRM could be obtained with implementation
of dedicated diagnostics [6], which is difficult for a large
storage ring with hundreds of BPMs. Alternatively, we will
use a neural network model to obtain the TRM.

NEURAL NETWORK SURROGATE
MODEL FOR TRM

Neural networks could efficiently find the function be-
tween inputs and outputs, which handles regression and
classification problems very well, especially for nonlinear
problems with large quantity data [7]. Therefore, a neural
network is applied to this work.

According to theoretical analysis above, the BPM temper-
ature, IDs gap and correctors current data from the historic
data for the entire year of 2019 are used to study the ther-
mal effects. We take ID gaps (see Fig. 1) and temperature
(see Fig. 2) as inputs and corrector currents (see Fig. 3) as
outputs, and use the about 80% of the processed data as
training dataset to train NN models and the rest data as test-
ing dataset to test models. Then get an NN surrogate model
which describes the mapping function,

Θ( ®𝑇, ®𝑔) = 𝑓 ( ®𝑇, ®𝑔). (8)

The TRM can be obtained using this surrogate model,
while the ID gaps are fixed. This process is similar to the
measurement of the ORM in a real storage ring. A distur-
bance of the BPM temperature Δ𝑇 (0.1 °C) is applied to each
BPM in turn. The new temperature ®𝑇 ′ is used as the inputs
to the model to get the corresponding corrector currents

Θ′ ( ®𝑇 ′, ®𝑔) = 𝑓 ( ®𝑇 ′ (𝑇1, ..., 𝑇𝑖 + Δ𝑇, ..., 𝑇𝑁 ), ®𝑔). (9)

Finally, the TRM is calculated as

𝑁𝑖 𝑗 =
𝜕𝜃 𝑗

𝜕𝑇𝑖
≈

𝜃′
𝑗
− 𝜃 𝑗

Δ𝑇
, (10)

where 𝑁𝑖 𝑗 is the term of TRM N , 𝜃 𝑗 is the j-th term of Θ
and 𝑇𝑖 is the i-th term of ®𝑇 .

For more accurate results, the predictions with NN mul-
tiple models are combined, which is called the model en-
semble. Averaging usually works well for a wide range of
problems. Here we train several different single models by
changing the activation function, the number of layers and
the number of neurons in each layer. The results from dif-
ferent models are averaged as the ensemble result in this
work.

DATA PREPARATION
The orbit feedback system of the HLS-II storage ring is

composed of 32 sets of BPMs and 32 sets of correctors [8].
There are two temperature sensors attached to each BPM,
for a total of 64. The raw data are needed to be processed
properly before training as following.

1. Select the data of user mode (the data with beam current
at 355 mA -360 mA). This is because the factors that affect
the beam orbit are relatively fewer in the user mode.

2. Discard the data which are out of the normal range.
3. Remove 4 sets of BPM temperature related to broken

sensors.
4. Apply interpolation to form consistent data frequencies.
5. Normalize the data.
Comparing the data (see Figs.1, 2, and 3), we can see that

they have a strong correlation, especially at positions 1 and
2 in the figures, which is consistent with theoretical analysis
above.
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Figure 1: Change of ID gaps.

Figure 2: Change of BPM vacuum chamber temperature.
Temperature of six BPMs are shown.

RESULTS
After training, several single models and an ensemble

model are obtained. The Fig. 4 shows the predictions of one
horizontal corrector current from testing dataset. From the
results, we can see that the prediction of the ensemble model
is better than that of a single model, and the real values are
almost within the error range of its predicted values, which
indicates good performance of this neural network model.
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Figure 3: Change of corrector currents. Currents of six
correctors are shown.
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Figure 4: Predictions of the models. The result of one correc-
tor current is shown in the figure, and the rest of the results
are similar. The real values are almost within the error range
of its predicted values.

By changing the BPM temperature sequentially, the beam
orbit shift due to BPM thermal deformation could be ob-
tained using the NN model and the Eqs. 7, 9, and 10. From
the results (see Fig. 5 and Fig. 6), the BPM temperature
variation has a great impact on the beam orbit, especially in
some locations, which is related to the lattice optics and the
BPM mechanical structure.
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Figure 5: Response of horizontal BPM readings to BPM
temperature. The average orbit shift due to BPM temperature
is about 34.5 μm/°C.

SUMMARY
In this paper, we report our study on the beam orbit de-

pendency of BPM temperature. An NN surrogate model is
introduced using the historic operation data of the HLS-II
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Figure 6: Response of vertical BPM readings to BPM tem-
perature. The average orbit shift due to BPM temperature is
about 20.0 μm/°C.

storage ring. The average orbit shift due to BPM thermal de-
formation is about 34.5 μm/°C and 20.0 μm/°C in horizontal
and vertical plane respectively.

The neural network only needs machine data, which is
easy to implement for storage ring based light sources. Be-
sides, this model could be used for the compensation of
beam reference orbit to improve beam orbit stability.
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