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Abstract
The GLC algorithm allows the construction of efficient

transfer lines with defined imaging properties using a mini-
mum number of quadrupole elements. This work describes
a generalisation of this algorithm to make it applicable to
the use of arbitrary beam optical elements. This includes an
extension to longitudinal phase space.

INTRODUCTION
The design of a matching section of a particle accelerator

can be formulated as an optimisation problem that can be
solved algorithmically. The goal of such an optimisation is
to achieve an optimal fit of a given particle distribution to
an arbitrary acceptance, with minimum energy and material
requirements (i.e., with the lowest possible field strengths
and the fewest possible elements). The formulation of the
individual problem can be reduced to the problem of min-
imising a single-valued fitness function over a multidimen-
sional cube. This requires finding a suitable, unambiguous
parameterisation to encode both the transfer line geometry
and the field strengths used (phenotype) by a list of numbers
(genotype) [1].

PARAMETRISATION
Given a general unspecific transport line of length 𝐿, in

which at least one section of length 𝐿opt can be equipped
with new elements. If 𝐿 = 𝐿opt, then there are no constraints
on the position of new elements. Furthermore, there is a
set of 𝜇 freely positionable beam manipulating components
{𝐶1, · · · , 𝐶𝜇}. These can also be meta-elements consisting
of a fixed combination of components. In addition, there
are those 𝜈 components whose positions are fixed from an
optimisation point of view, which means that they are lo-
cated outside 𝐿opt. In sum, this gives 𝑁 = 𝜇 + 𝜈 compo-
nents. Each of these components 𝐶𝑛 ∈ {𝐶1, · · · , 𝐶𝜇+𝜈} has
a certain number of 𝜆𝑛 free parameters 𝑥𝑛,1 · · · 𝑥𝑛,𝜆𝑛

. These
parameters can be e.g. quadrupole strengths, accelerating
gap voltages, but also the lengths of the respective elements.
The total number of free parameters is then

𝜂𝑝 =

𝑁∑︁
𝑛=1

𝜆𝑛 . (1)

A position must now be defined for each free component
from {𝐶1, · · · , 𝐶𝜇}. The possibility of arbitrary permuta-
tions of the components should be implicitly included. For
∗ s.reimann@gsi.de

this purpose, a relative position 𝑠𝑛 ∈ [0, 1] is defined for
each component. The actual position 𝑙𝑛 results then from

𝑙𝑛 = 𝑠𝑛 ·
(
𝐿opt −

𝜇∑︁
𝑛=1

𝐿𝑛

)
, (2)

where 𝐿𝑛 is the length of the component 𝐶𝑛. Due to free
positioning, the number of free parameters increases by 𝜇

to 𝜂 = 𝜂𝑝 + 𝜇 .
Every possible realisation of a transport path that satisfies

the given boundary conditions can be assigned to a point
in an 𝜂-dimensional subspace of R𝜂 . The parameters are
normalised to the range [−1, 1] with respect to the individual
device limits. So this corresponds to a point

𝒙 =

(
𝑥1 . . . 𝑥𝜂𝑝

𝑠1 . . . 𝑠𝜇

)
(3)

in the 𝜂 hypercube. Here 𝑥𝑛 and 𝑠𝑛 are respectively the
values of 𝑥𝑛 and 𝑠𝑛 normalised to the interval [−1, 1]. I want
to emphasise that each design solution for such a transfer
line corresponds to a point in this space. There is a distinct
assignment. Each of these points can now be assigned a
value of a fitness function

𝐹 (𝒙) = 1 − 𝑇 (𝒙) + 𝜖 (𝒙) (4)

that describes the performance of the associated transfer
line with respect to beam transmission 𝑇 . Its minimum
𝐹min corresponds to the largest transmission 𝑇max. The term
𝜖 (𝒙) represents the parameterisation of further optimisation
goals, such as lowest possible field strengths or minimum
component dimensions, and is defined as a sub-norm in the
simplest case, e.g.

𝜖 (𝒙) = | | (𝑥1, · · · , 𝑥𝜂𝑝
) | | =

√︃
𝑥2

1 + · · · + 𝑥2
𝜂𝑝

. (5)

The minimum of the fitness function encodes the optimal
design solution for any given problem.

Example: A Single Quadrupole
A drift section of length 𝐿 = 20 m is given at the end of

which an aperture limitation is attached. This has a diameter
of 4 cm horizontally and 10 cm vertically. An asymmetric,
divergent particle distribution is chosen such that most of
the beam is lost on the aperture limitation. For a quadrupole
of length 𝐿𝑞 = 1 m, the goal is to find a position 𝑙 = 𝑠 · (𝐿 −
𝐿𝑞) within this distance and a gradient (𝑘𝐿𝑞) at which the
transmission becomes maximum (Fig. 1).
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Figure 1: Representation of the solution with the maximum
achievable transmission of 𝑇 = 74.5% in this test case [2,
page 82]. The black lines represent 1𝜎 of the distribution,
the dark grey 2𝜎 and the light gray 3𝜎.

According to equation (2) and (3) the parameters

𝑥1 = (𝑘𝐿𝑞) and 𝑠1 =
𝑙

(𝐿 − 𝐿𝑞)
(6)

are used for the general optimisation. The problem has 𝜂 = 2
degrees of freedom and each solution here corresponds to
one point

𝒙 =

(
𝑥1
𝑠1

)
(7)

in the associated unit square. Since it is a 2-dimensional
problem, the function 𝐹 (𝒙) = 𝐹 (𝑥1, 𝑠1) can be visualized
over the entire domain of definition (Fig. 2). 𝐹 has only one
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Figure 2: The result of the parameter scan [2, page 81].
Shown is the value of the fitness function depending on the
normalised parameters 𝑠1 and 𝑥1. The minimum is located
at 𝑥1 = −0.35, 𝑠1 = 0.135.

minimum in this case, therefore a simple gradient method
will also lead to success here. In general, however, this
is not the case, because due to the quadrupole symmetry,

already from the use of a second quadrupole further sec-
ondary minima will occur and it is a priori not clear which
one corresponds to the global minimum.

To determine the value of the fitness function at a certain
point, a particle tracking simulation must be performed. The
number of particles or the consideration of space charge
and higher order effects are determined by the interested
scientist. For this purpose, for example, the common matrix-
based codes [3–7] can be used. However, depending on the
specification of the problem and the desired accuracy, the
number of necessary simulations grows rapidly. In particular,
it grows exponentially with the number of dimensions of
the problem space and soon exceeds all technically feasible
possibilities to complete the simulation in a reasonable time.

OPTIMISATION TECHNIQUES
In cases of large multidimensional search spaces, natural-

analog and metaheuristic optimisation methods have proven
to be very useful, which was used also for many accelerator
related optimisation studies [8–11]. For GLC, the following
methods were investigated and compared (Table 1:

• genetic algorithms [12]
• particle swarm optimisation [13]
• simulated annealing [14]
• BOBYQA [15]

Table 1 shows a comparison of the optimisation methods in
terms of the number of particle tracking simulations needed
to find the optimal solution. Similar results are also obtained

Table 1: Comparison of a set of optimisation methods with
respect to their performance. All heuristic algorithms are re-
liably able to find the optimum and differ only in the number
of necessary optimisation cycles and therefore in the num-
ber of necessary tracking simulations. For the comparison,
no special optimisation of the algorithms’ hyper-parameters
was performed.

optimisation method # tracking simulations
gradient descent 63 ± 12
scan Δ = 0.005 160000 ± 0
genetic algorithm 1790 ± 1048
particle swarm 7500 ± 6100
simulated annealing 8600 ± 5800
BOBYQA 26 ± 6

for other problems. The BOBYQA algorithm usually con-
verges 2 orders of magnitude faster than all other methods.
Unfortunately, it becomes increasingly unreliable in finding
the optimum for more complex problems and in fractured
parameter space topologies. For most examples, the genetic
algorithm proved to be the best compromise between speed
and probability of success. The topic of machine learning
is currently very dynamic and it can be expected that new
algorithms and methods will bring further improvements.
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Since the GLC method is generally independent of the un-
derlying optimisation algorithm, the algorithm can easily
be replaced to directly benefit from future developments. A
collection of further examples, as well as the application of
GLC in 2 accelerator projects (first, the construction of an
RFQ matching section in the planned HBS accelerator [16]
and second, the equipping of the H4 beam line at CERN
north area with Gabor lenses [17]) can be found in [2].

LONGITUDINAL EXTENSION
The extension of the algorithm to the longitudinal phase

space is implicitly included in the parameterisation described
above. The motion of the particles must then, necessarily
be described via their path in the 6 dimensional phase space.
In addition to the transverse location and momentum co-
ordinates (𝑥, 𝑥′, 𝑦, 𝑦′) at orbit position 𝑠, the longitudinal
distance to the central particle and the momentum devia-
tion (𝑧,Δ𝑝/𝑝) or, equivalently phase and energy deviation
(Δ𝜙,Δ𝑊) or (𝑧, 𝑧′) must be additionally considered.

𝑧 = 𝜙(𝛽𝜆) , 𝑧′ =
Δ𝑊

𝛽2𝛾3𝑚𝑐2 ,
Δ𝑝

𝑝
=

Δ𝑊

𝛽2𝛾𝑚𝑐2 (8)

For all beam optical elements, the corresponding 6x6 transfer
matrices must then be used in the particle tracking codes. In
this way, accelerating gaps and elements based on them, such
as buncher cavities, single gap resonators, but also complete
RF accelerators can be used as elements. The latter can be
defined, for example, as compound meta components. The
free parameters are then usually the position, the integral ac-
celerating voltage and the phase of the synchronous particle.
In this way, complex matching sections for 6-dimensional
acceptance targets of following accelerator sections can be
designed automatically.

Example: A Single Gap
Given is a matching section of length 𝐿 = 10 m in which

an accelerating gap is to be positioned to match a beam to
a given target acceptance ellipsoid. The main constraint is
the phase acceptance of ±30◦. All other limiting quantities
were chosen to be no real constraint. Calculations were per-
formed with the Accelerator Construction Set [2] (3dKV
space charge, no compensation, 1 mA protons, Δ𝑝

𝑝
= 0.001,

gaussian beam 𝜎𝜙 = 25◦). There are 3 degrees of free-
dom in this example: the position of the gap mid 𝑠𝑔𝑎𝑝 , the
gap voltage 𝑈𝑔𝑎𝑝 and the phase 𝜙𝑔𝑎𝑝. Thus each solution
corresponds to one point

𝒙 =
©­«
𝑈̃gap
𝜙gap
𝑠gap

ª®¬ . (9)

After an average of 40 generations (corresponding to 4000
simulation runs), the GLC solver converged. The result is
shown in Fig. 3. Scanning voltage and phase with the gap
position held fixed gives a projection of the fitness function
onto the 𝑈-𝜙-plane (Fig. 4).

Figure 3: Solution with the maximum achievable transmis-
sion of𝑇 = 91% in this test case. The gap position is 3.12 m.
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Figure 4: The result of the parameter scan with fixed gap
position. Shown is the value of the transmission depending
on the parameters 𝜙 and𝑈 = 𝐸0𝑇𝐿. The optimum is located
at 𝑈 = 25.3 kV, 𝜙 = −92◦.

ERROR STUDIES
In all cases where positioning errors were induced already

during the phenotype construction within the optimisation
process, there was evidence [2] that genetic lattice construc-
tion favours solutions that are robust to positioning errors.
In this way, error tolerance could be implemented early in
the design phase and the need for dedicated error studies
and subsequent iterations of the design process could be
eliminated.

CONCLUSION
The GLC algorithm is applicable to a large class of design

problems and, together with precise particle tracking codes,
GLC provides an excellent tool for the ion-optical design
of future linear accelerators or for the optimisation of beam
transport lines and matching sections [2].
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