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Abstract

The dynamic aperture (DA) of a hadron accelerator is rep-

resented by the volume in phase space that exhibits bounded

motion, where we disregard any disconnected parts that

could be due to stable islands. To estimate DA in numerical

simulations, it is customary to sample a set of initial condi-

tions using a polar grid in the transverse planes, featuring a

limited number of angles and using evenly distributed radial

amplitudes. This method becomes very CPU intensive when

detailed scans in 4D, and even more in higher dimensions,

are used to compute the dynamic aperture. In this paper, a

new method is presented, in which the border of the phase-

space stable region is identified using a machine learning

(ML) model. This allows one to optimise the computational

time by taking the complex geometry of the phase space into

account, using adaptive sampling to increase the density of

initial conditions along the border of stability.

INTRODUCTION

When studying the non-linear beam dynamics in a cir-

cular hadron ring in numerical simulations, one of the key

concepts is that of dynamic aperture (DA). It represents the

smallest, simply-connected volume in the 2�-dimensional

phase space that is stable (where � is the number of degrees

of freedom), i.e. that exhibits bounded motion over a given

time interval [1, 2]. More precisely, it is defined as the radius

of the 2�-sphere with the same volume �2� as the bounded

region:

DA =
2�

︂

Γ (� + 1)�2�

��
. (1)

The DA is a useful quantity, not only in accelerator design,

but also because it can be linked to measurable quantities

such as the time evolution of the beam intensity [3, 4] or

luminosity [5, 6] of a storage ring or collider.

In practice, computational limitations make us consider

the DA in two dimensions only, instead of six (the dimension

of the phase space of a particle beam). The transverse mo-

menta and longitudinal position coordinates are typically set

to zero, while the longitudinal momentum coordinate is typ-

ically set at a non-zero value that is deemed representative

for the longitudinal beam distribution under consideration.

An important aspect in the definition of DA, is that it

excludes disconnected stable islands from the calculation of

the volume. To consider this in simulations, traditionally the

DA is calculated by sampling initial conditions in a polar

grid, over a certain number of angles [2]. The stability border

is given, for each angle �� , by the largest connected stable
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amplitude �� . After integrating �� over angles, the DA is

approximated by [2]:

DA ≈

√

√

√

2

�
Δ�

� �︁

�

�� �
2

�
Δ� =

1

�� +1

�

2
, (2)

where �� are the constants of the chosen open integration

method and �� the number of angles. This calculation has

an error that scales with ∼ Δ�Δ�, hence ideally one would

like to keep Δ� ∼ Δ� to minimise the error associated to the

DA estimate [2].

It is also clear that the overall strategy to compute the DA

of a given accelerator lattice would gain in efficiency if the

initial conditions could be chosen to probe with high density

the region of the stability border, only. In this paper, we

explore an alternative to the polar sampling, where an initial

set of particles is sampled uniformly and machine learning

(ML) is applied to recognise the stability border at a given

number of turns. In a second step, we resample a larger set

of particles focused around the border region.

MACHINE LEARNING

To find the stability border at a given number of turns � ,

we divide the particles into those that survived at least �

turns, meaning their motion remains bounded for at least this

time, and those that did not, and then train an ML model as a

classifier. While in theory it would be feasible to divide the

particles in multiple groups for different number of survived

turns, it would not be an optimal division to train the ML

algorithm on.

We opted to use a support-vector machine (SVM) model

[7, 8], which is a supervised learning algorithm that is one

of the most robust prediction methods available. Because of

its (by default) binary classification, it is well-suited for our

particular data structure if split as described in the previous

paragraph. Though SVM is by default a linear classifier, it

can be used to classify data that are separated by a non-linear

boundary by using a kernel transformation: in our case, a

radial basis function is most suited due to the radial nature

of the data. It is an exponential kernel that maps two vectors

v and w as a function of the hyperparameter �:

� (v,w) = e−� ∥v−w∥ , (3)

where ∥·∥ stands for the vector norm. In ML training, the

different hyperparameters have to be tuned to get optimal

results. Like in classical statistics, a model that is not ade-

quately tuned can lead to under- or over-fitting the data. In

our case, there are two hyperparameters to tune: the above-

mentioned � that represents the convolution of the curve
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Figure 1: Average CV scoring function of a scan of more

than 10
3 values for the hyperparameters � and �.

(small � tends to make the curve more circular), and the

so-called �-parameter, that represents how strongly misclas-

sified points are penalised.

To tune the hyperparameters, we perform a random scan

over the � − � parameter space, and assess each pair’s per-

formance using Cross-Validation (CV) [9]. This means that

the data set is randomly split into � equally sized partitions,

where � − 1 partitions are trained upon and the remaining

partition is used to test the model’s performance. This is

then iterated � times, hence for one hyperparameters pair �

models are trained and tested. For small data sets it is com-

mon to take � = 5, but in our case we chose � = 10 as the

data set is large enough to get reliable testing with only 10%

of the data. An example of such a scan is demonstrated in

Fig. 1, which shows the average of the 10 models’ scores for

10
3 different hyperparameter pair values. It is clear that the

model is optimal for 1 ≲ � < 10 and 10
2 < � < 10

3. We

observe that the DA does not change much after sampling

2 × 10
2 pairs of hyperparameters.

BORDER RECOGNITION

Once the model is trained over a well-tuned set of hyperpa-

rameters, we want to extract the decision boundary between

the two categories as it represents the stability boundary.

This is not a trivial task: by its nature, the ML model ex-

cels at predicting for any point the category that it belongs

to based on the survival criterion; however, it provides no

direct information on the boundary.

To get an expression for the boundary, we use a trick: we

create a temporary image grid that represents the region

of interest, and let the ML model ‘colour’ each pixel as

white or black depending on the predicted category. Then

we use standard image recognition techniques to find the

contour lines between the two regions. Finally, the points

from the contour are interpolated with a spline to obtain a

continuous curve parameterised by � ∈ [0, 1], which can

then be integrated to get the area:

� =

1
∫

0

�(�)
d�(�)

d�
d� , (4)

from which the DA can be derived using Eq. (1).

Figure 2: Example of a DA result for the HL–LHC, tracked

over 6000 particles after resampling. In black is the DA

border as recognised by the ML algorithm.

An example result is shown in Fig. 2, which is a logarith-

mic plot of the survived number of turns �surv, for a set of

6 × 10
3 particles after resampling (see below), tracked over

the High Luminosity LHC (HL–LHC) lattice [10] including

a specific realisation of magnetic field errors. Shown in

black is the DA border predicted by the ML model. The DA

for this specific example is calculated to be 12.87�.

RESAMPLING

An adaptive algorithm typically works in several steps. In

our case, after we used the uniform sample of 10
3 particles

to recognise the minimum and maximum stability borders,

defined by the minimum resp. maximum number of sur-

vived turns, we can resample particles in between these two

borders.1 However, the turn value that defines the minimum

stability border needs to be chosen carefully. If it is too

small, the resampling region will be larger than necessary

with a sub-optimal resampling efficiency as a consequence.

On the other hand, if the minimum turn value is too large,

the resampling region will be rather small, making it difficult

for the ML model to define two distinct borders. In our case,

we have observed that taking �min = 20 turns gives a nice

balance between the two. Note that the value of �min does

not influence the value of the DA at larger number of turns.

Once we established both borders, we can resample. We

want to prioritise particles closest to the maximum border

region, as these can rapidly change their survived number of

turns for small amplitude steps, due to the chaoticity of the

dynamics in this region. Furthermore, the borders we have

thus far established are rather crude and might be a little

off; hence, to be able to refine them, we want to additionally

sample particles at amplitudes larger than the minimum

border or smaller than the maximum border.

To achieve this, we first define for each particle a nor-

malised shortest distance � to the maximum border, defined

1 Note that the minimum border sits at amplitudes larger than the maximum

border, as the former contains more particles than the latter.
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Figure 3: Resampling in action. The minimum and maxi-

mum border are given by the red resp. green curves, which

are used to sample the 5× 10
3 new particles shown in black.

such that � = 0 represents a particle on the maximum bor-

der, and � = 1 a particle on the minimum border. We allow

� to take values from −1/2 to +3/2, representing particles

beyond the borders as discussed above. Then we weight

the sampling algorithm with a probability that is a function

of this distance, skewed towards the maximum border. We

achieve the desired sampling density if we use the following

weighting function:

︂

� +
1

2
e−(�+

1

2 )
2

� ∈

[

−
1

2
,
3

2

]

. (5)

This is illustrated in Fig. 3, which shows three cate-

gories of initial particles: blue for �surv < 20, orange for

20 ≤ �surv < 10
5, and green for �surv = 10

5. The borders

corresponding to �min = 20 and �max = 10
5, as found by

the ML model, are the red resp. green curve, and 5×10
3 new

particles, sampled following the logic above, are shown in

black. These extra points are used in the border calculation

as shown in Fig. 2.

PRECISION

The precision of the ML method to calculate the DA is

defined by three parameters: the number of tracked particles,

the number of configurations used to set the hyperparame-

ters, and the step size of the image grid used to retrieve the

decision function. The effect of the last parameter is shown

in the top plot of Fig. 4, which shows the relative deviation

�DA =
DA(Δ� = 1�) − DA(Δ�)

DA(Δ� = 1�)
(6)

compared to the most crude DA (calculated with a step size

of 1�), as a function of the step size Δ�. One can see that

already at a step size of Δ� ∼ 0.02� the convergence of the

relative deviation is achieved.

Finally, to estimate the overall accuracy of the method,

we repeated the same DA calculation 5 × 10
2 times, with

Figure 4: Accuracy assessment of the model. Top: DA

precision as a function of the step size of the image grid.

Bottom: Histogram of 5 × 10
2 iterations of the same DA

calculation. For the blue plot, each iteration used 10
3 initial

conditions, 2 × 10
2 hyperparameter pairs, and a step size of

0.02�. The green plot shows the same data after resampling.

each iteration having 10
3 randomly sampled particles, 2 ×

10
2 hyperparameters pairs, and an image grid stepsize of

Δ� = 0.02�. This is illustrated in the bottom plot of Fig. 4,

which shows a histogram over these iterations (blue plot)

with mean 12.681� and standard deviation 0.093�. We can

conclude that even with only 10
3 initial particles, we obtain

a result with a rather satisfying precision. Furthermore, after

resampling 5 × 10
3 extra particles for each iteration (green

plot), the precision is strongly enhanced, with mean 12.708�

and standard deviation 0.016�.

CONCLUSION

We have developed a new method to calculate the DA of a

circular accelerator, based on supervised machine learning.

We explored how the new model depends on the different

ML hyperparameters, and verified that a randomised search

over configurations leads to good results. Furthermore, we

inspected the overall performance of the model by making

5 × 10
2 iterations of the same calculation, confirming a pre-

cision compatible with that of traditional methods. Where

the latter typically use around 6 × 10
3 initial particles to

achieve this precision, the proposed method does this with

1 × 10
3 initial particles, only. The clear gain in CPU time

that follows from this is very useful for high-volume studies,

where multiple different machine configurations are probed.

Finally, we showed how the model can be used to im-

plement an adaptive sampling algorithm that only samples

new initial conditions from the region of interest, improving

overall accuracy with minimal increase in computing time

requirements. This is a necessary improvement for studies

that link the DA to physical observables.
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