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Abstract
Computing the long-term behaviour of single-particle

motion is a numerically expensive process, as it requires a
large number of initial conditions to be tracked for a large
number of turns to probe their stability. A possibility to
reduce the computational resources required is to provide
indicators that can efficiently detect the chaotic character of
the orbits, which is considered a precursor of unbounded
motion. These indicators could allow skilful selection of sets
of initial conditions that are then considered for long-term
tracking. The chaotic nature of each orbit can be assessed by
using fast-converging dynamic indicators, such as the Fast
Lyapunov Indicator (FLI), the Reversibility Error Method
(REM), and the Smallest and Global Alignment Index (SALI
and GALI). These indicators are widely used in the field of
celestial mechanics, but not so widespread in accelerator
physics. We have studied their efficiency by applying them
both to a modulated Hénon map, as a toy model, and to
realistic lattices of the High-Luminosity LHC. In this paper,
we discuss the results of detailed numerical studies, focusing
on their performance in detecting chaotic motions.

INTRODUCTION
The chaotic character of the orbits of a Hamiltonian sys-

tem, such as the 4𝑑 modulated Hénon map [1], which de-
scribes the transverse motion in a circular accelerator [2] or
a realistic accelerator lattice such as that of the HL–LHC [3],
can be analysed by means of dynamic indicators. These are
quantities that probe the linear response to an initial small
random displacement or to random displacements along the
orbit. Dynamic indicators have been one of the main tools
for studying the chaotic character and long-term stability in
many specific problems in celestial mechanics [4–6].

As direct tracking of realistic accelerator lattices on
timescales of physical interest, i.e. 108 turns, is not an op-
tion for several initial conditions, there is a strong interest
in tools that can probe the long-term behaviour of initial
conditions at lower numbers of turns. Well-established dy-
namic indicators, like the Fast Lyapunov Indicator (FLI) [6],
have been applied to accelerator physics, together with in-
dicators based on harmonic analysis [7]. Recently, studies
based on the Reversibility Error Method (REM) [5] have
also been performed [8]. However, modern dynamic indi-
cators such as the Smallest and Global Alignment Index
(SALI and GALI) [9] have not yet been extensively consid-
ered in accelerator studies. Moreover, a general overview
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of different dynamic indicators in accelerator models is not
available. The study presented here is a first step in assessing
the performance of these indicators for accelerator-related
studies.

OVERVIEW OF DYNAMIC INDICATORS

Lyapunov-based Dynamic Indicators
Given a non-autonomous Hamiltonian map 𝑀(x, 𝑛) in

ℝ2𝑑, 𝐷𝑀(x, 𝑛) denotes the symplectic Jacobian matrix
(𝐷𝑀)𝑖𝑗 = 𝜕𝑀𝑖/𝜕𝑥𝑗 at the point x, then the orbit of the map
x𝑛 and the recurrence for the tangent map L𝑛 are given by

x𝑛 = 𝑀 (x𝑛−1, 𝑛 − 1) x0 = x
L𝑛(x) = 𝐷𝑀 (x𝑛−1, 𝑛 − 1) L𝑛−1(x) L0 = I . (1)

Note that in the autonomous case L𝑛(x) = 𝐷𝑀∘𝑛(x). For
any initial condition x we consider a small stochastic devi-
ation 𝜖𝜉, where 𝜉 is a random vector with zero mean and
unit covariance matrix. Letting y𝑛 = 𝑀 (y𝑛−1, 𝑛 − 1) be the
orbit with initial condition y0 = x + 𝜖𝜉, the linear response
vector Ξ𝑛(x) is defined by

Ξ𝑛(x) = lim
𝜖→0

y𝑛 − x𝑛
𝜖 = 𝐷𝑀 (x𝑛−1, 𝑛 − 1) Ξ𝑛−1 . (2)

The FLI after 𝑛 iterations is defined as FLI𝑛(x) =
log ∥L𝑛(x)𝜉∥ /𝑛, and can be easily implemented with the
‘shadow particle’ method [10], i.e. estimating ∥L𝑛(x)𝜉∥ by
explicitly taking a companion particle with initial condi-
tion y0 and computing the displacement after 𝑛 turns, while
performing norm renormalizations every 𝑚 turns.

As FLI can be affected by the choice of 𝜉 [11], a novel
method consists in evaluating the eigenvalues and invariants
of L𝑛L𝑇

𝑛 given by

L𝑛(x)L𝑇
𝑛(x) = ⟨Ξ𝑛(x)Ξ𝑇

𝑛(x)⟩ with ⟨𝜉 𝜉𝑇⟩ = I . (3)

This provides interesting results [12] as it is equivalent to
considering all possible directions of the initial displacement
vector. However, for complex maps, such as the Poincaré
map of a realistic lattice, an analytical expression of the tan-
gent map is not available, and the use of this method requires
further considerations. A possible alternative is provided
by the Orthogonal Fast Lyapunov Indicator (OFLI) [13],
which consists in computing different FLI values along an
orthonormal base of displacements. We refer to OFLI MAX
as the maximum value obtained along the tracking and to
OFLI MEAN as the mean of the computed values.
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Figure 1: Ground Truth (GT) construction for the modulated Hénon-like map (top) and the HL–LHC (bottom). From left to
right: a survival plot; FLI distribution for all initial conditions stable up to 𝑛max; histogram of FLI values, clustered with a
K-Means algorithm; binary classification of non-chaotic (yellow) and chaotic (purple) initial conditions.

Reversibility Error Method
The REM is obtained from the linear response to a small

stochastic deviation during 𝑛 iterations of the map, followed
by 𝑛 iterations of the inverse map

y𝑛′ = 𝑀 (y𝑛′−1, 𝑛′ − 1) + 𝜖𝜉𝑛′ 1 ≤ 𝑛′ ≤ 𝑛
y𝑛′ = 𝑀−1 (y𝑛′−1, 2𝑛 − 𝑛′) 𝑛 + 1 ≤ 𝑛′ ≤ 2𝑛 . (4)

The linear response at iteration 2𝑛 is given by

ΞR𝑛(x) = lim
𝜖→0

y2𝑛 − x
𝜖 =

𝑛
∑
𝑛′=1

L−1
𝑛′ 𝜉𝑛′ . (5)

The round off produces a sort of pseudo-random deviation
along the orbit, with amplitude 𝜖 ∼ 10−16, in the 8 bytes
standard IEEE754 [14] representation of reals. Since only
one realisation is available, the absence of averaging results
in significant fluctuations when 𝑛 or x are varied.

SALI and GALI
SALI [15], and its generalisation GALI [16], are dynamic

indicators based on the concept that linearly independent
initial deviation vectors tend to coincide for chaotic motion
when 𝑛 ≫ 1. The GALI order 𝑘 indicators are given by the
volumes of parallelotopes whose sides are the normalised
images 𝜉(𝑗)

𝑛 of 𝑘 linearly independent vectors 𝜉𝑗 with 1 ≤
𝑗 ≤ 𝑘, i.e.

𝜉(𝑗)
𝑛 (x) = L𝑛(x)𝜉𝑗/∥L𝑛(x)𝜉𝑗∥

GALI(𝑘)
𝑛 (x) = ∥𝜉(1)

𝑛 (x) ∧ ⋯ ∧ 𝜉(𝑘)
𝑛 (x)∥ ,

(6)

and their asymptotic behaviour for chaotic orbits with 𝑘
ordered positive Lyapunov exponents is given by

GALI(𝑘)
𝑛 ∼ 𝑒−𝑛[(𝜆1−𝜆2)+…+(𝜆1−𝜆𝑘)] , (7)

whereas for regular quasiperiodic orbits, whose Lyapunov
exponents vanish, the GALI indicators decay as a power law.
SALI is equivalent to GALI with 𝑘 = 2, i.e. only 2 linearly
independent deviation vectors are considered.

RESULTS OF NUMERICAL SIMULATIONS
A 4𝑑 modulated Hénon-like map with octupolar kick [17],

representing the Poincaré map of a FODO cell, has been
used for the analysis of dynamic indicators. It reads

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥′

𝑝′
𝑥

𝑦′

𝑝′
𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠𝑛+1

= R(𝜖, 𝑛)
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑝𝑥 + 𝑥2 − 𝑦2 + 𝜇 (𝑥3 − 3𝑥𝑦2)

𝑦
𝑝𝑦 − 2𝑥𝑦 − 𝜇 (3𝑥2𝑦 − 𝑦3)

⎞⎟⎟⎟⎟⎟⎟
⎠𝑛

,

(8)
where R(𝜖, 𝑛) is the direct product of two 2𝑑 rotations in the
𝑥 − 𝑝𝑥 and 𝑦 − 𝑝𝑦 planes, whose linear frequencies 𝜔𝑥(𝑛)
and 𝜔𝑦(𝑛) vary with 𝑛 according to

𝜔𝑧(𝑛) = 𝜔𝑧0 (1 + 𝜖
𝑚

∑
𝑘=1

𝜖𝑘 cos (Ω𝑘𝑛)) 𝑧 = 𝑥, 𝑦 , (9)

with 𝜔𝑥0 = 0.31, 𝜔𝑦0 = 0.32. The harmonics Ω𝑘 are based
on SPS measurements [1], along with relative amplitudes
𝜖𝑘, expressed in units of 10−4. Here, we consider the case
with 𝜖 = 16.0 and 𝜇 = 0.01, corresponding to a medium
modulation strength and a weak octupolar kick.

The same analysis was performed for an HL–LHC [3]
lattice, without beam-beam interaction, at 7.0 TeV, and tunes
𝜔𝑥 = 0.31, 𝜔𝑦 = 0.32. All analyses performed for the HL–
LHC lattice considered only the 4𝑑 transverse coordinates.

Single-particle tracking has been performed using the
Xsuite software package [18], a novel Python-based software
that reimplements and extends the SixTrack single-particle
code [19] following modern programming paradigms and
allowing efficient GPU parallelisation. The code structure
allowed us to easily implement in the particle tracking the
normalisation of shadow particles for every turn tracked,
and it made it possible to track a large amount of initial
conditions thanks to the computing possibilities offered by
GPUs. For both models, the initial conditions were sampled
on a regular 100 × 100 2𝑑 Cartesian grid in the transverse
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Figure 2: REM computed at 𝑛 = 104 for the Hénon map
(left) and the HL–LHC lattice (right). The shape of the REM
distribution enables efficient K-Means clustering.

𝑥 − 𝑦 plane, with initial 𝑝𝑥 = 𝑝𝑦 = 0, and for the HL–LHC
model, the longitudinal variables were set to zero.

To test the predictive power of chaos detection by dynamic
indicators, we define and perform a Ground Truth (GT) clas-
sification based on FLI calculated for 𝑛max = 108 (Hénon
map) or 107 (HL–LHC lattice). The resulting distribution
shows a main cluster of non-chaotic particles with a lower
mean FLI value and a secondary cluster of chaotic particles
with a higher mean FLI value. A K-Means algorithm [20] is
used to compute a threshold to distinguish the two clusters.
This threshold value is used for a binary chaotic/non-chaotic
classification of initial conditions (see this entire process for
both models in Fig. 1).

We define as predictive performance of a dynamic in-
dicator the accuracy, i.e. the ratio between the correctly
labelled initial conditions and the total number of initial con-
ditions, achieved in the GT reconstruction, with the K-Means
approach applied to the dynamic indicators computed for
𝑛 < 𝑛max. A good dynamic indicator should achieve the cor-
rect identification of chaotic particles even when 𝑛 ≪ 𝑛max,
allowing the correct clustering detection and binary clas-
sification based on the threshold computed with K-Means.
Figure 2 shows an example of both models obtained with
REM for 𝑛 = 104. The threshold calculated by the K-Means
algorithm is also displayed. The large separation between
the two distributions of REM values for the HL–LHC case
makes clustering easy.

Figure 3 compares the distribution of FLI and REM, for
the HL–LHC. Their distributions follow a different evolution
with 𝑛. Clustering might be particularly hard for FLI at low 𝑛,
as its distributions do not feature a clear separation between
the chaotic/non-chaotic components.

The accuracy achieved by all dynamic indicators consid-
ered as a function of 𝑛 is shown in Fig. 4. For both mod-
els, Lyapunov-based dynamic indicators exhibit a marked
steplike increase in performance for 𝑛 3-4 orders of mag-
nitude lower than 𝑛max, followed by a steady increase as 𝑛

Figure 3: Histograms of FLI and REM for HL–LHC. FLI
does not show the presence of a second cluster at 𝑛 = 102

so that it can be classified correctly by K-Means. REM
generates a secondary cluster already at 𝑛 = 102.

Figure 4: Accuracy achieved by the dynamic indicators at
reconstructing the GT.

approaches 𝑛max/100. This step-like increase is related to
the time needed by the dynamic indicators to reach a value
distribution that is approachable with K-Means clustering.
SALI and GALI, instead, feature a better performance for
very low 𝑛, but then remains constant over the time interval
explored, with the exception of GALI showing a decreasing
performance for HL-LHC.

CONCLUSIONS AND OUTLOOK
An exploratory study of dynamic indicators was carried

out on accelerator-related models to test the performance in
predicting chaotic behaviour. Chaos detection is performed
in combination with a K-Means algorithm used as a clus-
tering strategy for the distribution of the dynamic indicator.
The performance of a dynamic indicator is provided by re-
constructing a Ground Truth computed at a high number of
turns. The results are rather similar for the two models and
indicate that REM, SALI, and GALI may provide a better
and early detection of chaos compared to Lyapunov-based
indicators. However, these show a steady improvement with
the number of turns 𝑛.

Future research will address the confirmation of these
results in more models and the testing of more refined clus-
tering strategies to fully exploit the predictive potential of
dynamic indicators. Moreover, the analysis should be ex-
tended to 6𝑑, also including longitudinal dynamics.
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