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Abstract

The superconducting (SC) continuous wave (CW) heavy
ion linac HELIAC (HElmholtz LInear ACcelerator) is a
common project of GSI and HIM under key support of IAP
Frankfurt. It is intended for future experiments with heavy
ions near the Coulomb barrier within super-heavy element
(SHE) research and aims at developing a linac with multiple
CH cavities as key components downstream the High Charge
State Injector (HLI) at GSI. The design is challenging due to
the requirement of intense beams in CW mode up to a mass-
to-charge ratio of 6, while covering a broad output energy
range from 3.5 to 7.3 MeV /u with minimum energy spread.
In 2017 the first superconducting cavity of the linac has been
successfully commissioned and extensively tested with beam
at GSI. In the light of experience gained in this research so
far, the beam dynamics layout for the entire linac has been
updated and optimized in the meantime. This contribution
will provide a brief overview of the recent progress on the
project, as well as a potential modification to the linac layout.

BEAM DYNAMICS CONCEPT

A preliminary beam dynamics design - based on the
EQUUS (Equidistant Multigap Structure) concept - has been
published in 2009 [1]. Meanwhile many experiences have
been gained at GSI/HIM [2—7] and IAP [8-16] in design,
fabrication and operation of superconducting CH (Crossbar
H-mode) cavities (Fig. 1) and the associated components. In
this context, a revision of the beam dynamics concept was
strongly recommended and has been published in 2020 [17].
The EQUUS beam dynamics concept differs from the widely
used constant phase approach in a way that the gap center
distances in a cavity are equidistant. As the velocity of a
bunch increases inside a cavity, EQUUS leads to a varying
synchronous phase of the bunch for each gap.

RECENT PROGRESS

In the current advanced demonstration stage, an extended
beam test with a first fully equipped series cryomodule is
planned to take place shortly at GSI. In recent years, the cor-
responding infrastructure at GSI has been built and expanded.
Among other things, this includes a radiation-shielding area
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Figure 1: Two of the twelve CH cavity models used to obtain
realistic assumptions of gap and drift lengths, as well as gap
voltage distributions. Autodesk Inventor rendering of CH1
(left) and CST model of CH4 (right) [12].

with a connection to the existing 4 K helium liquefier. In
addition, the commissioning of an ISO-class 4 clean room
at the Helmholtz Institute Mainz (HIM) providing the high-
purity environment required for the adequate assembly of
superconducting RF structures took place.

Furthermore, activities on the normal-conducting HLI-
injector are underway: This includes R&D for the existing
and for a new HLI-RFQ [18] as well as the started tendering
for two IH structures for acceleration from 300 keV/u to
1.4 MeV/u by means of an APF beam dynamics concept [19].
Finally, there are considerations regarding an upgrade of the
ECR ion source from 14 GHz to 18 GHz to fulfill demands
for higher charge states.

Table 1: Basic HELIAC Design Parameters [1]

Parameter Value

W; 1.4MeV/u
Wout 3.5-7.3MeV/u
AW, +3keV/u

I < 1mA
Alz <6

The main requirements and boundary conditions for the
linac design are summarized in Table 1. With a relatively low
beam current, CW-operation and limited longitudinal space,
this linac is predestined to be operated in the superconduct-
ing mode. Further thoughts on the choice of technology with
regard to superconducting or room-temperature operation
can be found in [20].
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Figure 2: Current about 30 m-long HELIAC layout (fop) and investigated variant in which CM3 and CM4 were combined
into one cryomodule (bottom). With the new approach, a buncher cavity, as well as a solenoid magnet, could be omitted.

RECENT BEAM DYNAMICS STUDIES

The 2020 HELIAC reference layout is simulated with
LORASR [21] and based on twelve multicell CH-type DTL-
cavities operating at 216.816 MHz (doubling the HLI operat-
ing frequency). They are grouped in four cryomodules (CM 1
to CM4). Each cryomodule comprises three CH cavities,
one spoke-type buncher and two superconducting solenoids.
This superconducting part is followed by a room temperature
transport section with a final buncher cavity (FB) at the end
(Fig. 2). To optimize the beam dynamics design in terms
of acceleration efficiency, E, = 7.1 MV /m has been chosen
as maximum design gradient for the CH cavities in case of
mass-to-charge ratio A/z = 6 (see Table 1).

Due to the well-advanced design phase of the first standard
cryomodule (“Advanced Demonstrator”, CM1), all positions
and lengths of the HELIAC beam line elements including
the beam diagnostics were updated at last.

Benchmark with TraceWin

Positon (m )

Figure 3: TraceWin-simulated transverse x(z) (fop) and
phase (bottom) beam density along the entire HELIAC. The
black curves show the rms-width.

For future start-to-end beam dynamics simulations,
TraceWin is a suitable and widely used code. When the
RF designs of all HELIAC cavities are finalized, the use
of 3D field maps for precise simulation of the electric field
distribution within the cavities is recommended for a high

MC4: Hadron Accelerators
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simulation accuracy. In a first step, it has been investigated
for the 2020 HELIAC design to what extent a thin gap ap-
proximation already provides sufficiently accurate results
(Fig. 3), i. e. comparable with LORASR, despite the strong
simplification of the gap geometry. When comparing the
beam envelopes simulated with TraceWin with those sim-
ulated with LORASR, a very good agreement was found.
The same holds true for the phase space density plots at the
HELIAC exit and thus also the growth in emittance. Devia-
tions between the two codes are within the expected range,
especially caused by the thin gap approximation. Further
details can be found in [22] as well as details of a comparable
study in [23].

Merging CM3 and CM4

Recent findings have indicated that longer cryomodules
than previously envisioned could possibly be used. This ap-
proach with cryomodule lengths > 5 m was initially rejected
for handling reasons, among others. However, if it turns out
that the use of longer cryomodules is indeed possible, cry-
omodules 3 and 4 could be merged and combined into one
cryomodule. At the same time, the significantly reduced drift

distances could also save a solenoid magnet and a buncher :

cavity. While the removal of these elements could result in
a slight degradation of beam quality, it would also result in
noticeable cost savings as well as valuable shortening of the
overall length of the linac by 2.49 m. A first beam dynamics
approach for this case is shown in Figs. 2, 4, 5 and 6.

CONCLUSION

As the GSI UNILAC is being upgraded for FAIR with
short pulse operation and high intensity [24-27], the HE-
LIAC is favorable to meet the user’s requirements for SHE
research [28]. A promising beam dynamics layout was devel-
oped, showing a possible design approach for the upcoming
HELIAC which essentially meets the required beam param-
eters [29, 30]. Taking the already achieved encouraging
experimental data, as well as the presented results of beam
dynamics simulations into account, the SC CW linac HE-
LIAC is of high interest for the accelerator community. The
upcoming extended beam test with a first fully equipped
cryomodule is scheduled to take place soon at GSI and will
mark the next milestone on the way to the entire HELIAC.
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Figure 4: Simulated particle envelopes along the entire HE-
LIAC; the phase jump at the end of the beam line corresponds
to the halved RF frequency for the final buncher (FB).
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Figure 5: Evolution of the mean bunch energy W, the syn-
chronous phase ¢, and the effective voltage per gap U,.
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