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Abstract

In the framework of developing radiation tolerant imaging
detectors for transverse beam diagnostics, the use of machine
learning powered imaging using optical fibers is explored for
the first time at CERN. This paper presents the pioneering
work of using neural networks to reconstruct the scintillat-
ing screen beam image transported from a harsh radioactive
environment over a single, large-core, multimode, optical
fiber. Profiting from generative modeling used in image-
to-image translation, conditional adversarial networks have
been trained to translate the output plane of the fiber, im-
aged on a CMOS camera, into the beam image imprinted
on the scintillating screen. Theoretical aspects, covering
the development of the dataset via geometric optics simula-
tions, modeling the image propagation in a simplified model
of an optical fiber, and its use for training the network are
discussed. Finally, the experimental setups, both in the labo-
ratory and at the CLEAR facility at CERN, used to validate
the technique and evaluate its potential are highlighted.

INTRODUCTION

The Beam TV observation system (BTV) is the most
widely used devices for beam image observation at
CERN [1]. It is an imaging system that collects the visible
light emitted by the particle beam crossing a phosphor screen,
or other radiator inserted in its path, inside the vacuum cham-
ber. The optical system relays the beam distribution image
imprinted on the screen through a viewport to a detector,
often a camera. In harsh radioactive environments, in-house
developed cameras based on VIDICON tubes are currently
in use. With the production of the tubes being discontinued
worldwide, image transportation through fibers is one of
the options currently being investigated as a replacement at
CERN [2].

In this framework, pioneering work to reconstruct the
beam’s transverse distribution using a single, large-core,
multimode optical fiber began in 2020. It takes advantage of
advances in generative modeling using deep learning meth-
ods, such as convolutional neural networks, and attempts to
apply them to beam diagnostics. In this paper the possibility
of converting back the patterns at the output of the multi-
mode fiber imaged on a camera into beam distributions is
explored and the performance of such a detector in measur-
ing beam centroid and width is assessed. Finally an outlook
for the future developments will be presented.

WORKING PRINCIPLE

The proposed solution is based on an “extended” optical
system that is meant to replace the rad-hard detector. The
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scintillating screen light is collected and its image is relayed
away from the radiation area where it can be acquired using
a standard CMOS camera. The system logically is split in
three parts:

* afirst stage refractive system, imaging the beam screen
and coupling the image into an optical fiber,

* amultimode large core fiber transporting the light away
from the harsh radioactive environment,

* afinal single stage optical system, relaying the exit of
the optical fiber onto a CMOS camera placed in a lower
dose area of the accelerator.

Optical Constraints

The first stage magnification is dictated by the chosen fiber
core diameter and the field of view requested to cover the
dynamics of the beam. A minimum magnification of 0.05 is
needed for stage 1 in order to fit a typical working area of the
screen (30 mm x 30 mm) onto the entrance of the multimode
fiber FP1500ERT [3] with a core diameter of 1500 um (used
throughout the tests). Given its Numerical Aperture (NA) of
0.5, a typical light coupling efficiency of a few percent is to
be expected. Finally, a 5x amplification is needed to relay the
fiber output to a typical CMOS sensor (6.6 mm x 4.1 mm).
In and out optical coupling are optimized using high NA
microscope objective lenses. The pair of images obtained
for the beam image and fiber output will be analyzed using
machine learning algorithms.

PIX2PIX CGAN MODEL

The problem under discussion could be formulated as
an “Image-to-Image” translation. A classical problem that
is addressed with Generative Adversarial Networks (GAN)
that consist of a generator and discriminator network that
improve mutually in the adversarial evolution. The state-of-
the-art framework for general purpose image translation is
Pix2Pix [4], a “conditional” GAN since the generator model
is provided with a target image and trained to both fool the
discriminator model and to minimize the loss between the
generated image and the expected target image. A slightly
modified version of the Pix2Pix network is used in this study:

Generator U-Net

The U-Net [5] model architecture is very similar to au-
toencoders, as it involves downsampling to a bottleneck
and upsampling again to an output image, but links or skip-
connections are made between layers of the same size in
the encoder and the decoder, allowing the bottleneck to be
circumvented. For our application, the input image is passed
in 6 consecutive convolutional layers of size 64, 128, 128,
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Figure 1: The full 3 stage optical system simulated in Zemax Optic studio in non sequential ray tracing mode.

256, 512 and 512 with batch normalization, dropout, and
activation layers at each level. Only a single skip connection
is used at the top level. The loss function for the generator
training was also expanded to include the Euclidean norm
(L2) on both the horizontal and vertical projections of the
target and input images.

Discriminator

The PatchGAN discriminator model is implemented as a
deep convolutional neural network, where the effective re-
ceptive field of each output of the network maps to a specific
size in the input image. The output of the network is a single
feature map of real/fake predictions that can be averaged
to give a single score. The original Pix2Pix patch size of
70x70 is used and demonstrated to be effective also for our
case.

MODEL APPLICATION

The feasibility of this technique was probed at the theoret-
ical level with simulations and then experimentally in setups
both in the laboratory and in the accelerator, as summarized
in this section.

Optical Simulations

A realistic dataset was developped in Zemax OpticStu-
dio [6]. Non-sequential ray tracing mode was used, account-
ing for ray split, scattering, and back reflections, as shown
in Fig. 1. The fiber was simulated with straight concentric
cylinders with the refractive index provided by the manufac-
turer at 589.3 nm. Using the interactive extension ZOS-API,
the optical system was coupled to a python script control-
ling the incoming rays source (system illumination). 2D
Gaussian illuminations were randomly generated emulating
different beam conditions impinging on the BTV screen. A
dataset of 1000 image pairs: input image and propagated
rays image in Zemax to the simulated CMOS detector was
created.

The ML model was successfully trained on a subset of 300
image pairs, after 100 epochs with Adam optimizer learning
rate of 2e-4 for both the generator and the discriminator.
Tested on the remaining 700 pairs, the reconstruction error
of both the beam width and position was bound by an rms
error < 2%. Figure 2 shows qualitatively a few reconstructed
samples.
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Figure 2: Predicted samples (lower row) applying the trained
network on simulated model inputs, at the fiber exit (central
row), compared to truth distributions at the fiber entrance
(upper row).

Laboratory Installation

The encouraging simulations results, motivated the pur-
chase of the large core fiber and dedicating a laboratory
measurement setup to assess the feasibility of the image
transmission in a real fiber, studying the coupling efficiency
the focal length and numerical apertures of the optical system.
For an increased robustness and to ease the setup, the final
imaging stage relaying the fiber exit to the CMOS was re-
placed by a mechanical fixing (SMA connectors) that rigidly
ties the fiber end to the camera with a few mm distance
ensuring most of the emitted light is collected on the sen-
sor. In addition to the laser alignment line, a portable LED
screen controlled via a python script was used to display
varying 2D multivariate normal distributions in position and
width acting as the source illumination emulating the BTV
screen. Coupling efficiencies around 10% were obtained
and a dataset of ~5000 collected, that allowed training a
model featuring a reconstruction error < 10% rms on width
in both planes.

CLEAR Facility Experiment

The CERN Linear Electron Accelerator for Research
(CLEAR) is a Linac producing bunched electron beams
accelerated up to 220 MeV. A table-top setup with our
fiber installation was prepared, pre-aligned and installed
in parallel to one of the operational BTV in its experimental
beam line. A pellicle beam-splitter was introduced in the
BTV optical path to share the light emitted by the Chromox
(Al O3 : CrO,) screen. The location was chosen next to the
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Figure 3: Sketched layout of the experimental setup installed
at CLEAR showing the fiber installation with its calibration
line in parallel to the operational BTV.

focusing triplet before the plasma cell, where by changing
the strength of quadrupoles QFD760, QDD765 and QFD770,
various beam distribution could be obtained on the screen.
A slight trajectory misalignment was also introduced in the
triplet to allow the beam centroid to be scanned on the scin-
tillating screen in combination with the varying beam width.
The installation sketched in Fig. 3 denotes with different col-
ors the three light paths: in pink the operational BTV light
path, in orange the calibration line light path, in green the
image transport in fiber light path. A three hours dedicated
beam Run took place in July 2020, using a 150 MeV electron
beam where 1300 random beam distributions (highly non
Gaussian) were obtained with the triplet scan. Using the

Fiber Output Beam Image Predicted Image

Figure 4: Typical beam image reconstruction for a model
trained on real data. Note the non-Gaussianity of the ob-
tained beam distributions with the triplet scan technique.

Error on Reconstructed Centroids Error on Reconstructed Widths

Horizontal
20 Vertical 20

Horizontal
Vertical

15 15

counts

=20 -10 0 10 20
Error [%]

-40 =20 0 20 40
Error [%]

Figure 5: Errors distributions for the estimated beam cen-
troid and width with the Pix2Pix trained on beam data.

pre-trained model on the calibrator screen dataset did not
allow the reconstruction of the measured beam distributions.
Despite the beam centroid being estimated with errors of
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~ 15%, errors > 50% on the width estimation were obtained.
Therefore, a new training was carried out using beam data
(300 samples) and then applied on rest of the dataset as de-
picted in Fig. 4. Figure 5 shows how the obtained model
correctly estimated the centroids with an rms error of ~ 3%
and width of ~ 14% and ~ 9% in the horizontal and vertical
plane respectively.

OUTLOOK

To rule out the effect of transporting the optical system
and its installation at CLEAR, by introducing mechanical
deviations or vibrations invalidating the trained model, a
new dataset was collected in-situ with the calibration system.
The model was re-trained against the latter and tested on the
beam dataset. Unfortunately, its predictive capabilities still
did not improve.

Two main factors could be at the origin of the non-
applicability of the pre-trained models: the "Gaussian” dis-
tribution used in the training dataset that deviates greatly
from the various beam distributions obtained with the triplets
scan technique and the wavelength dependency of the fiber
transmission that features an increase of attenuation by fac-
tor 4 between the narrow band emission of the Chromox
screen at 693 nm and the calibrator LED screen emission
range 450 nm-620 nm.

Future steps will focus on improving the calibration sys-
tem to emulate better the screen light emission characteris-
tics and investigating new transfer learning techniques that
would allow reducing the size of the training dataset, thus
reducing the dedicated beam time required.

CONCLUSION

An experimental demonstration for beam image transport
in a large core multimode fiber was presented in this paper.
The Pix2Pix conditional generative adversarial network was
successfully used to reconstruct beam centroid and beam
width with a standard error in the order of 10%. The trained
model accuracy was proven in simulations, a laboratory
setup and in the CLEAR facility with electron beams. The
training transferability was not demonstrated since each of
the three aforementioned scenarios required a re-training on
its proper dataset. Future studies will focus on enriching the
model with environmental factors (temperature and vibra-
tion levels) to increase its robustness and fidelity. Transfer
learning techniques to reduce the training datasets size will
also be investigated. Finally, as an alternative to cGANS,
variational auto-encoders will be explored, since granting ac-
cess to the latent dimension at the encoder bottleneck could
allow a better control of the model parameters.
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