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Abstract

Constraints on the beam diagnostics available in real-time

and time-varying beam source conditions make it difficult to

provide users with high-quality beams for long periods with-

out interrupting experiments. Although surrogate model-

based inference is useful for inferring the unmeasurable,

the system states can be incorrectly inferred due to man-

ufacturing errors and neglected higher-order effects when

creating the surrogate model. In this paper, we propose to

adaptively assimilate the surrogate model for reconstructing

the transverse beam distribution with uncertainty and under-

specification using a sequential Monte Carlo from the mea-

surements of quadrant beam loss monitors. The proposed

method enables sample-efficient and training-free inference

and control of the time-varying transverse beam distribution.

MATHEMATICAL BACKGROUND

Accelerator Systems with Unknown Drift and Pa-

rameter Uncertainties

The dynamical system of the accelerator with measure-

ment error can be written as

¤� = � (�, �) (1)

� = ℎ(�, �) + � , (2)

where � ≡ �(�) ∈ R� is the vector of the time-varying

hidden states, � ∈ R� is the control input state, � is the time.

� ∈ R� is the measurement, and � = [�1, ..., ��]� is the

independent measurement noise.

To produce a quality beam of interest by inferring hidden

states �, we introduce a surrogate model as

¤̂� = �̂ (�̂, �) (3)

�̂ = ℎ̂(�̂, �), (4)

where �̂ ≡ �̂(�) ∈ R�, and �̂ ∈ R� are the counterpart of

the real system Eq. (1)(2) built based on the parameterized

system model. One may infer the hidden state by simply

minimizing the loss function

� (�) = ∥� − �̂∥2
2. (5)

However, the accurate state � cannot be necessarily obtained

due to the model uncertainties and possible multiple hidden

states when the measurement is sparse. The goal of the fol-

lowing Approximate Bayesian Computation (ABC) frame-

work [1] is to sequentially filter and track the time-varying

hidden state estimates �̂ by minimizing the expectation of

the cost function in Eq. (5) throughout the operation of the

accelerator complex.
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Markov-Chain Monte-Carlo (MCMC) for the Ini-

tial Posterior Inference

Given an observation �, the initial posterior distribution

of interest for a given fixed control input � can be given by

�(�̂ | �̂) = �( �̂ |�̂)�(�̂)
�( �̂) , (6)

here subscripts for denoting the time steps are omitted in

this section, e.g., �̂ = �̂�=0. Since �(�̂ | �̂) is a probability

distribution, we can rewrite this equation as

�( �̂) =
∫

�( �̂ |�̂)�(�̂)��̂. (7)

The probability density function �( �̂) given a measurement

� with normally distributed sensor noise with standard devi-

ation �� = {��1, ..., ���} is expressed as

�( �̂) =
�

∏

�

1
√

2��� �

exp

(

−
| �̂ � − � � |2

2�2
� �

)

(8)

and �( �̂ |�̂) drawn by surrogate model equation Eq. (4).

Then, the proposal �(�̂) of a general nonlinear system can

be sampled using MCMC [2]. In this work, the parallel

tempering MCMC (PT-MCMC) algorithm is adopted to

efficiently find the optimal and promote mixing across the

state spaces. Details on PT-MCMC can be found in [3].

Particle Filtering for Tracking Hidden States

The sequential importance resampling is a class of particle

filter algorithm. The sequence is initialized with a set of

� particles representing �(�̂), and assign the normalized

weights � �
�=1

= 1/� , for all � = 1, ..., � . Then particles at

a discrete time step � − 1 are sequentially propagated for

a new time step � to update prior �(�̂�
�
|�̂�

�−1
, ��−1). The

weight update of �-th particle is performed based on the

measurement and cosine similarity

�( �̂�� |�̂
�
� , �� , ��−1)

∝ sim� (Δ� �̂
� ,Δ� �)

�
∏

�

exp

(

−
| �̂�

�
− � � |2

2�2
� �

)

. (9)

Here, sim� (Δ�
�
�̂,Δ� �) is a similarity measure between the

responses of the actual system Δ� � ≡ �� − ��−1 and the

surrogate model Δ�
�
�̂ ≡ �̂�

�
− �̂�

�−1
expressed by

sim� (Δ�
� �̂,Δ� �) =

{

1+� (Δ�

�
�̂,Δ�� )

2
(∥Δ�

�
�̂∥ > 2��)

1 (∥Δ�
�
�̂∥ ≤ 2��)

(10)

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOPT034

MOPOPT034C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

324

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T03: Beam Diagnostics and Instrumentation



and �(�, �) ≡ �·�
∥�∥ ∥�∥ is the cosine similarity. The inequality

conditions in Eq. (10) are introduced such that the noise

level does not adversely affect the weight updates. Then the

sample particles are reweighed according to Eq. (6) as

� �
� =

�( �̂�
�
|�̂�

�
, �� , ��−1)� �

�−1
∑

� �( �̂�� |�̂
�
�
, �� , ��−1)� �

�−1

. (11)

After each update of states and weights, the particles are

resampled by systematic resampling to obtain new equally-

weighted particles to prevent degeneracy when the effec-

tive sample size ��� =

(

∑�
�=1 (� �

�
)2

)−1

is below the user-

defined threshold [4].

NUMERICAL EXPERIMENTS

CNN Modeling of the Transverse Beam Dynamics

with Parameterized Beam Source Condition

In the numerical experiment, the system Eq. (1) is defined

to mimic the beam transport line after the AVF cyclotron

as in Fig. 1(a) of Ref. [5]. Control inputs � ∈ R7 are

assigned to applied excitation current for a quadrupole triplet

(�1, �2, �3), horizontal and vertical steerers (�4, �5), and a

subsequent quadrupole doublet (�6, �7).

This study’s incident particle distribution containing � =

40, 000 particles is characterized by skewed bi-Gaussian

transverse beam distribution with skewness parameters �x,y

[6, 7], while fixing the beam width. Here, the skewness in

x-axis �x modifies the standard normal distribution �(x) =
1√
2�

exp (−x2/2) to be �� (x) = 2�(x)Φ(�x), where Φ(x)
is the cumulative distribution function of the normal distri-

bution Φ(x) =

∫ x

−∞ �(�)�� = 1
2

[

1 + erf
(

x√
2

)]

. The same

applies to the y-axis. Note that the skewness is a practical

problem for the beam extracted by the AVF Cyclotron of

Nishina Center as in Fig. 5 of Ref. [5].

Figure 1: (a) Beam transport system’s overview. (b) Time

variation of hidden states �x,y over discrete time steps � . (c)

Transverse distribution � (�x, �y) at the position of the beam

loss monitors (d). (e) The number of incoming particles for

each loss monitor relative to the initial observation �∗.

The observation function ℎ(�, �) ∈ R4 is defined to sum

up the transverse two-dimensional histogram � (�x, �y) ∈
R

52×52 as in Fig. 1(c) overlapped by the beam loss monitors

on each side (R: Right, L: Left, U: Up, D: Down) as in Fig.

1(d), where �x ∈ N and �y ∈ N are indexes of pixels which

evenly discretize the field of view at the beam loss monitor

location.

As summarized in Fig. 1, we assume the skewness pa-

rameters of the incident beam before the transport slowly

vary like a sigmoid function over 60 discrete time steps as

in Fig. 1(b). The transverse beam distributions at � = 0

(Fig. 1(c-i)) and at � = 60 (Fig. 1(c-ii)) differ as shown

in Fig. 1(c-iii) as a result of these time-varying skewness

parameter. The subset Fig. 1(e) describes the time evolution

of the observations by loss monitor Fig. 1(d) at each side

relative to the optimized value �∗� at � = 0.

Following the similar procedure in [8][9], the correspond-

ing simulation-based surrogate model is trained using Con-

volutional Neural Network to output transverse distribution

estimate �̂ (�x, �y) ∈ R52×52 as a function of the excitation

currents and hidden parameters of the incident beam distri-

bution �x,y ∈ [−3, 3]. The average reconstruction error of

the predicted transverse distribution �̂ (�x, �y) defined by the

equation below resulted in around 7 % for the test data.

����� =
︁

�x ,�y

| �̂ (�x, �y) − � (�x, �y) |/
︁

�x ,�y

|� (�x, �y) |

We take into account the input bias in surrogate modeling,

e.g., �-th component of the input is assumed to be

�̂� = (1 + ��)�� , (12)

where �� is the hidden state representing the scaling error.

In the later sections, the nine-dimensional vector �̂ =

[�1,...,��, �x, �y]� is considered as the hidden states to

be updated by sequential Monte-Carlo (SMC). By comput-

ing the likely hidden states �̂ from measurements � with

the ABC framework, surrogate-based reconstruction of the

transverse beam distribution can be made even if invasive di-

agnostic devices such as wire scanners or scintillators are not

insertable remotely due to insufficient room for installation

or because of their damage threshold.

Process Variance for Hidden States Tracking

Changes in the hidden parameters are updated by condi-

tioning the probability distribution of states, which is spread

by artificial process noise, with the observation at each step

� . For simplicity of calculation, a Gaussian uncertainty

with a standard deviation ��� up to 5 % of the maximum

�-th training excitation current � is considered for �� in Eq.

(12); ��� = 0.05 max�� . In the sequential filtering process,

Δ�̂ ∼ N (Δ�, ���) is added to the surrogate model input for

each move Δ� on the actual system. Here, � is the squared

average of the control input norm for each move relative to

max�� expressed as � ≡ 1
�

∑�
�

Δ�2
�

max�2
�

, and �� = diag�2
�

where �2
� = [�2

�1
, ..., �2

��].
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On the other hand, the process variances of the skewness

parameters �x,y are determined from the variances of the

resultant MCMC particle distribution. The MCMC is initial-

ized first by finding �̂ which minimizes the cost Eq. (5) while

the initial guesses �x,y = 0 are used for the skewness param-

eters, and then subsequent proposal moves are accepted for

the criterion conditioned by Eq. (8).

Measurement Based Control while Tracking the

Hidden State Space for the Underspecified Model

In this section, we aim at matching the observation � to

the target observation �∗ ∈ R� while tracking the hidden

states with SMC. For the weighted sum of the observations

on the surrogate model �̂� =
∑

��
�
�
�̂�
�
, the optimal input at

time � + 1 can be determined by the following two steps

�∗
= arg min

�

∥(�� − �∗) − ( �̂� − �̂�+1)∥2
2 (13)

��+1 = �� + �(�∗ − ��). (14)

Please note that if �̂� is equal to �� , �̂�+1 is made close to �∗.
Here, the exponential convergence factor � (0 < � ≤ 1) is

introduced to regulate the input move within the proximity

of the input state �� . In this study, the optimization problem

Eq. (13) is solved using the simplex method [10] for the

measurement estimates �̂ inferred by the surrogate model

with tracked hidden states �̂� =
∑

��
�
�
�̂�
�

with � = 5, 000.

Here, the standard deviation of the Gaussian noise � � is set to

5 % relative to �∗� , while the measurement uncertainty �� is

designed to be 10 % of the desired values for each output �∗� .
To demonstrate the robust behavior of the proposed scheme

to underspecified model, the beam current is gradually en-

hanced by 10 % with a factor which varies like a sigmoid

function similar to �x,y. In Fig. 2, the control strategy Eq.

(14) for a randomly picked input state �0 is demonstrated for

(a) � = 1/3 and (b) � = 1/2. Figure 2(a) demonstrates the

successful stabilization of the time-varying system only with

a few samples around the optimal �∗ for the noisy sensor

measurement, while a slightly delayed response is observed

for the higher rate of change in hidden states |��+1 − �� |.
Figure 2(b) suggests that large � can lead to unstable re-
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Figure 2: Results of control attempts toward �∗� ( � ∈
�, �,�, �) by Eq. (13) for (a) � = 1/3 and (b) � = 1/2.
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Figure 3: Left: The blue line shows the relative error of

� (�x, �y) when the model’s state is controlled based on the

distribution �̂ (�x, �y) represented by the red line toward

��� � (�x, �y). The yellow line is the uncontrolled reference

when the state evolves as in Fig. 1. Right: Error in the

transverse distribution � (�x, �y) at (a) � = 0 and (b) � = 60.

sponse because too large input move toward optimal �∗ can

promote quick degeneracy of sample particles.

Inference Based Control Strategy for the Trans-

verse Beam Distribution

Instead of the control strategy based on observable �, we

design the control law as to minimize
∑

�x ,�y
| �̂�+1 (�x, �y) −

��� � (�x, �y) |2 by replacing the cost function in Eq. (13),

where the reference distribution ��� � (�x, �y) is defined to

be the one shown in Fig. 1(c-i). The left window in Fig. 3

illustrates the responses of the actual system and surrogate

model to this control strategy beginning at a randomly picked

control state �0 under the time-varying hidden state as in

Fig. 1 (b). In this scenario, the error of the actual system

(blue) and surrogate model (red) are close throughout the

state space tracking by the particle filter, and the distribution

error is minimized as shown in the right panes of Fig. 3.

As a result, the error at the final state (at � = 60) is much

less than the uncontrolled case (yellow) whose distribution

began by ��� � (�x, �y).

CONCLUSION

We checked the efficacy of the similarity-based hidden

state tracking and control using SMC on a simulation-

based surrogate model. The method has proven its sample-

efficient and robust behavior for uncertainties and under-

specifications. The inference-based optimization is demon-

strated for the beam distribution estimate of the assimi-

lated surrogate model. Future directions would be the high-

dimensional extension of the SMC algorithms potentially

with Ref. [11] and [12], error compensation of the surro-

gate model itself, and global tracking of multiple plausible

clusters of possible states. The theoretical bound on the ex-

ponential convergence factor � should be also investigated.
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