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FELs & CLARA test facility
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The UK is presently assessing the case for a UK XFEL (X-ray Free-Electron Laser). In

simple terms it's the next generation of x-ray source, capable of observing ultra-fast
dynamics as well as structure.

FELs are linear accelerators (single-pass) with various setups (need fast switching and
optimisation)

F%Ls generate huge amounts of data — ML interest from both machine and experiment
sides

IC:EIE_f\RA IS an accelerator test facility at Daresbury — broadly relevant but particularly for
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CLARA front-end operational, all
else except FEL being built



https://stfc.ukri.org/news/uk-xfel-draft-science-case-consultation/
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Predicting FEL Parameters s
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*Using 10,000 start-to-end simulation data from the accelerator and A B
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FEL, 17 machine parameters were varied and used to produce 6D U
bunches and FEL simulation results
*|PS images were generated (200x200 pixels, fixed screen size for all
cases) and used as input to a Convolutional Neural Network (CNN), T ey T
. . Bandwidth
in an attempt to reproduce the FEL pulse energy and bandwidth
values for future accelerator optimization
*The FEL pulse energy vs. bandwidth scatter plot shows the "
predicted values (red) and the corresponding true values (blue) T
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Predicting LPS Beam Images

 Start-to-end simulation data from the
accelerator and FEL was used to \

produce 2 kinds of LPS beam images
*SLAC used Neural Networks (NN) to Real

reproduce LPS images from machine  Images
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*The same NN model was used to Predicted beam images vs real beam images (non-ROI images)
predict the images — the model is ‘
significantly better at predicting the

Predicted
Images

Predicted

: : , Images
beam images with ROl scaling (the
mean squared error was a lot lower) s
Images
(100x100)

Predicted beam images vs real beam images (ROl images)

6 Dense layers LPS beam images

Machine
parameters




) Some common iterations in both ROl and non-ROIl image clusters
Science and ROI Cluster
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Beam Image Clusters .

*PCA was applied to the beam images after
which they were clustered using K-means

*8 clusters were used for each — the images
(ROl and non-ROIl) were distributed well
within these clusters but the model had
trouble clustering the non-ROIl images with
smaller and less-defined shapes of the beam
*Examining the average machine parameters
within each cluster showed some relationship
to beam position (hon-ROIl images) and shape
(ROl images)

*The ‘2D’ clusters were related to FEL 114 -
performance metrics as shown in the scatter
plot
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Thank you!



