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Application of Machine Learning to Predict the Response of the Liquid Mercury Target at the 
Spallation Neutron Source

• The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is currently the 
most powerful accelerator-driven neutron source in the world. The intense proton pulses 
strike on SNS’s mercury target to provide bright neutron beams, which also leads to severe 
fluid-structure interactions inside the target. Prediction of resultant loading on the target is 
difficult particularly when helium gas is intentionally injected into mercury to reduce the 
loading and mitigate the pitting damage on the target’s internal walls [1, 2]. Leveraging the 
power of machine learning and the measured target strain, we have developed machine 
learning surrogates [3] for modelling the discrepancy between simulations and 
experimental strain data. We then employ these surrogates to guide the refinement of the 
high-fidelity mercury/helium mixture model to predict a better match of target strain 
response.
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WGI: with gas injection

mercury density: 13500 kg/m3, sound speed: 1456 m/s, tensile cutoff:150000 Pa

RMS: root-mean-square of strain values
RANGE: Max strain – Min strain
Eucl dist: Euclidean distance 
Pearson R: Pearson Correlation Coefficient

Stress

Run# Tensile Cutoff (Pa) Density (kg/m3) Sound Speed (m/s)
1 1.5517E+06 4.3069E+03 4.8793E+03
2 3.1035E+06 1.3500E+03 7.9517E+03
3 6.2069E+06 2.1948E+03 2.4897E+03
4 1.3966E+07 1.0643E+04 3.8552E+03
5 9.8276E+06 7.2638E+03 4.5379E+03
6 2.5862E+06 5.9966E+03 8.6345E+03
7 1.0000E+01 9.7983E+03 7.2690E+03
8 1.0345E+06 3.4621E+03 1.1241E+03
9 1.1379E+07 1.3178E+04 1.4655E+03

10 1.2414E+07 2.6172E+03 2.8310E+03
11 1.1897E+07 1.7724E+03 6.5862E+03
12 5.6897E+06 1.2333E+04 6.9276E+03
13 4.6552E+06 8.1086E+03 5.5621E+03
14 1.3448E+07 6.8414E+03 1.8069E+03
15 7.7586E+06 3.0397E+03 9.6586E+03
16 7.2414E+06 1.1488E+04 3.5138E+03
17 4.1379E+06 1.0221E+04 1.0000E+04

Run# Tensile Cutoff (Pa) Density (kg/m3) Sound Speed (m/s)
18 8.2759E+06 7.6862E+03 8.2931E+03
19 1.0345E+07 1.1910E+04 9.3172E+03
20 1.5000E+07 5.5741E+03 5.2207E+03
21 1.4483E+07 8.9534E+03 7.6103E+03
22 6.7241E+06 3.8845E+03 6.2448E+03
23 8.7931E+06 9.3759E+03 4.4138E+02
24 1.0862E+07 1.3600E+04 5.9034E+03
25 3.6207E+06 1.1066E+04 7.8276E+02
26 5.1724E+06 6.4190E+03 2.1483E+03
27 5.1725E+05 8.5310E+03 3.1724E+03
28 2.0690E+06 1.2755E+04 4.1966E+03
29 1.2931E+07 5.1517E+03 8.9759E+03
30 9.3103E+06 4.7293E+03 1.0000E+02
31 1.5000E+07 5.3310E+03 1.0000E+03
32 1.5000E+07 5.6370E+03 1.5000E+03
33 0.0000E+00 1.1762E+04 2.2500E+03
34 1.5000E+07 5.3310E+03 7.5000E+02

Varying Tensile Cutoff, 
Density and Sound Speed 
values are randomly 
selected from Latin 
hypercube sampling points 
[4]; strain data calculated 
from these new finite 
element runs provide training 
dataset for machine learning.

Isosurface plot of the ML 
surrogates shows regions 
that likely contain candidate 
parameters, which helps 
refine the parameters search 
space in next stage.

• Introduce more physics-based bubble models into mercury material model for parameter 
tuning.

• Increase the number of FE simulations to improve the accuracy of machine learning surrogates 
and enable more machine learning methods.

• Refine the parameter space and develop optimization framework for an efficient parameter 
search.
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By comparing with one set of 
experimental strain sensor data, 
34 sets of FE sensor data build 
trial ML surrogates. Projections 
of trial surrogates on random 2d 
planes show multimodality, 
which indicates some optimized 
parameters that can reduce the 
strain discrepancy in FE 
simulation due to the existence 
of gas bubbles. 
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