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Abstract

Tuning Parameters in Mercury Material Model

: : . : Run#  Tensile Cutoff (Pa) Density (kg/m3) Sound Speed (m/s) Run# Tensile Cutoff (Pa) Density (kg/m?) Sound Speed (m/s) . .
» The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is currently the 1 S517EX06  430690E+03  4.8793E+03 18 B.2750E+06  7.6862E+03 8.2931E+03  varying Tensile Cutoft,
: . : 2 3.1035E+06  1.3500E+03 7.9517E+03 19 1.0345E+07  1.1910E+04 9.3172e+03  Density and Sound Speed
most powerful accelerator-driven neutron source in the world. The intense proton pulses 3 6.2060E+06  2.1948E+03 2.4897E+03 20 15000E+07  5.5741E+03 5.2207E+03  values are randomly
. y . . . _ + _ - _ - 21 1.4483E+07 8.9534E+03 7.6103E+03 -
strike on SNS’s mercury target to provide bright neutron beams, which also leads to severe T 2 STMIEWS  IBMSEN  SOMBEND  bolpran ol
. . . . . . . . . _ + _ + _ + 23 8.7931E+06 9.3759E+03 4.4138E+02 _
fluid-structure interactions inside the target. Prediction of resultant loading on the target is T 26005403 2 1082E+07  13600E+04 5903403  [4]; strain data calculated
I . . . . . : . ) + _ + ] + : + . + . + f th f t
difficult particularly when helium gas is intentionally injected into mercury to reduce the o 1197907 19178E04  14GSSEA03 25 Si7MEWE  GAI0E-03  214E-03  element runs provide training
I . "y gy ) . . 10 1.2414E+07 2.6172E+03 2.8310E+03 27 5.1725E+05 8.5310E+03 3.1724E+03 dataset for machine learnin
oading and mitigate the pitting damage on the target’s internal walls [1, 2]. Leveraging the A 188 e A0 6.5862E+03 28 20690E406 1 .2755E+04 41966E+03 g.
power of machine learning and the measured target strain, we have developed machine 15 4059E«05  010BGE-03  SeriEws 30 OAIBEA0S  472009E+03  1.0000E+03
learning surrogates [3] for modelling the discrepancy between simulations and 15 7756EA06  3037E«03  06S86E+03 32 1SO00E-07  SEIOE03  15000E403
experimental strain data. We then employ these surrogates to guide the refinement of the ot S¥ e e S e
high-fidelity mercury/helium mixture model to predict a better match of target strain
response.

By comparing with one set of
experimental strain sensor data,
34 sets of FE sensor data build
trial ML surrogates. Projections
of trial surrogates on random 2d
planes show multimodality,
which indicates some optimized
parameters that can reduce the
strain discrepancy in FE
simulation due to the existence
of gas bubbles.

Isosurface plot of the ML
surrogates shows regions
that likely contain candidate
parameters, which helps
refine the parameters search
space in next stage.
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* Introduce more physics-based bubble models into mercury material model for parameter
tuning.

* Increase the number of FE simulations to improve the accuracy of machine learning surrogates
and enable more machine learning methods.

* Refine the parameter space and develop optimization framework for an efficient parameter
search.
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RMS: root-mean-square of strain values
RANGE: Max strain — Min strain

Eucl dist: Euclidean distance

Pearson R: Pearson Correlation Coefficient
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