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Abstract

   For studies of beam dynamics with complicated geometries of the fields, it is necessary 

to track particles using field maps, instead of an analytic representation of the fields 

which is typically not available. These field maps come about while designing elements 

such as realistic magnets or radiofrequency cavities, and represent the field geometry on 

a mesh in space. However, simple interpolation of the fields from the field maps does not 

guarantee that the resulting tracking scheme satisfies the symplectic condition. Here we 

present a general method to decompose the field-map potential as a sum of interpolating 

functions that produces, by construction, a symplectic integrator.



Core Concept —
Symplectic integrators, Poisson brackets, and the failures of interpolation

Most symplectic integrators use a split map approach, based on the Lie algebraic formalism, e.g.:

This requires exact evaluation of the Poisson brackets, which have partial derivatives of the 

coordinates. This means that a “kick” needs to be computed as the exact gradient of a scalar function. 

For 2- and 3-D field maps, interpolating the fields does not guarantee the resulting kick is the 

exact gradient of a scalar function.
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Symplectic integration using field maps requires 

an exactly differentiable interpolation between 

grid points in the field map.



Exactly Differentiable Representations of Field Maps

Field maps know the 

vector potential at 

discrete points in space

Use locally differentiable 

basis functions to define 

interpolation scheme

Take all required derivatives 

and integrals using local 

basis functions



Example — 
Tracking through quadrupole field map in a FODO channel

● Quadrupole potentials represented 

with gridded transverse and 

longitudinal data

● Each longitudinal slice has a 2-D cubic 

spline interpolation model

● Space between slices linearly 

interpolated between spline models

● Model kicks are exact derivatives of a 

scalar function



Example — 
Tracking through quadrupole field map in a FODO channel

To show stability, track through 

a field map with perfect linear 

forces for 1M turns through 

the FODO lattice.

A non-symplectic integration 

scheme would show unphysical 

spiraling in the phase space, 

which we do not observe. The 

integrator is preserving the 

emittance.



Example — 
Tracking through quadrupole field map in a FODO channel

Applied 10% random noise to 

the potential field map, same 

interpolation scheme. This 

introduces unphysical 

high-order nonlinearities.

Symplectic integration captures 

Hamiltonian structures with 

nonlinear dynamics without 

spiraling.



Conclusions —

● Application to real fringe-fields — nontrivial 3D vector potentials

● Application to time varying systems — rf cavity mode field maps

● Self-consistent modeling — rf cavity beam loading

Future Work —

Use a differentiable representation for symplectic tracking


