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Problem formulation
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Numerical optimization
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Numerical optimization
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RL for control

random misalignments

Traditional RL agents l
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RL for control

It is hard to achieve meaningful results with black-box models
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During each epoch NN is trained with simulated data for the given random misalignments and tries to

maximize initial state (orange line). After max. 40 iterations the procedure begins again for new random
misalignments.
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RL for control

random misalignments

Traditional RL
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of a trainable NN

ideal lattice
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RL for control enhanced by physics-based NN

ideal lattice

real lattice with random
misalignments
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RL for control enhanced by physics-based NN

real lattice with random

misalignments
ideal lattice
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RL agent recovers misalignments distribution from data and
provides an optimal strategy

Similar to a traditional optimizer that utilizes knowledge from historical data and uses adaptive
steps during objective maximization
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of trainable NN
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RL agent + Taylor map-based NN approximates true system

Taylor maps are calculated for the ideal lattice, but true lattice consists of magnets with
strengths reduced by 20%
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Thank you
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