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Abstract

The time-series Beam Position Monitor (BPM) data of kicked beam is a function of

lattice parameters and beam parameters including phase-space density. The

decoherence model using the first-order detuning parameter has an exact solution

when the beam is Gaussian. We parameterize the beam phase-space density by

multiple Gaussian kernels of different weights, means, and sizes to formulate the

inverse problem for 2D phase-space tomography. Numerical optimization and

Bayesian inference are used to infer the beam density and uncertainty.
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Introduction

The BPM data of  a kicked beam can be 

modeled as a function of  the linear and 

nonlinear optics parameters, and the beam 

phase-space density 

Gaussian Beam

KV Beam



Decoherence BPM data model

We model BPM data by

Assuming slowly varying frequency in the scale of  the beam size, the frequency is 

modeled by



Exact solution for Gaussian beam

Under the slowly varying frequency assumption: ,

an exact solution for Gaussian beam exists

where and



General distribution

For general distribution, one need an approximation to extract meaningful 

expression for the centroid decoherence motion. As the centroid decoherence is due 

to the phase-mixing, it is also advantageous to work on frequency domain. Define 

DFT like function

where is the phase-space angle of  the initial kick such that



Marginalized probability density

One can show that (in the limit of  large initial offset compared to the initial beam 

emittance: i.e. ) the marginalized 1D (in the direction of  initial offset) 

probability density of  the 2D probability density of  phase-space can be written in 

terms of  the DFT like function of  the centroid data

This suggest that if  we have multiple kicks of  different angles , we can reconstruct 

the 2D phase-space.



Gaussian Kernel Density Model

However, the large initial offset ( ) requirement can be tight due to the physical 

beam pipe aperture.

Recalling that we have exact solution for gaussian beam, we parameterize the 2D beam 

density model using multiple Gaussian kernels. Each gaussian kernels have 4 parameters: (1) 

weight, (2,3) relative locations (x, p) from the beam center, (4) emittance.

Then, the centroid data of  the whole beam is the linear sum of  each gaussian 

kernel contributions. This translates our problem as parameter fitting on the inverse 

problem.



Curse of  Dimensionality

However, the large number of  gaussian kernels for good resolution poses the task 

of  the global parameter fitting of  the inverse problem very difficult due to the curse 

of  dimensionality. 



Bayesian Approach (Brief  Sketch)

Our solution is to use the Bayesian approach with the prior from the parameter fitting on 
the leading order model:

The leading order model helps us to initialize and fit the parameters approximately close to 
the true solution. Once we fit the parameters on the leading order model, we can build 
posterior using

Then perform the local optimization to maximize posterior.
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Virtual beam centroid signals

We randomly generate beam density and

prepare 4 virtual BPM data using 4

different initial kicks using the following

frequency model:

The initial beam emittance is 2 nm. The 4

kick strengths are 3,4,5,6 times of the beam

emittance and the kick angles equally

spaced from 0 to π. We also added virtual

noise of RMS size 20 µm
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Construct prior mean: (1) frequencies

Recall

and notice that the frequency parameter µ0 is not coupled with any other parameters.

This allow us to optimize the frequencies using the following condition (on the 

4 BPM data )



Construct prior mean: 
(2) initial kick strengths and angles

Once we optimize the frequencies , we further optimize the nonlinear detuning 
parameter, initial kick strengths, angles and betatron function using 
the following condition.

Here the nonlinear detuning parameter is determined from least square fit of  
the frequencies over the initial kicks strengths . Although we have less 
number of  constraints compared to the parameters to fit, we experienced that when 
the initial guess is close to the ground truth, the local optimization often works.



Construct prior mean

DFT like function using 

roughly estimated 

parameters:



Construct prior mean

DFT like function after 

optimization of  the 

following parameters:



Construct prior mean: (3) Gaussian kernels

Once we have fixed based on the leading order theory, we 

continue to fit the parameters gaussian kernels on the leading order theory.



Construct prior mean: (3) Gaussian kernels

DFT like function using 

gaussian kernels well 

fitted on the DFT like 

function using the virtual 

BPM data



Construct prior 

Once we have prior mean, we construct the prior using normal distribution. We use 

independent normal of  the parameters with the standard 

deviation from our belief. For example, since we are building prior from the leading 

order theory that is in the limit of , we choose smaller standard deviation 

for smaller . In other words, we have more confidence on our belief  for larger 

initial kick.

As for the gaussian kernel parameters, we do not construct prior as it is hard 

to choose the standard deviation in a reasonable away
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Construct posterior mean

Now we construct posterior mean by model fitting on

Specifically, we construct our likelihood by

Where k is the index for each kick and represent the model parameters including 

the parameter quantifying model error and data noise . 



Construct posterior mean

Ground truth

maximum a posteriori
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Samples within credential interval

So far we have done point estimate. Since our prior and likelihood are modeled 

by gaussian distribution, the posterior is also gaussian. This helps us to sample from 

posterior with known credential level without relying on MCMC (Markov chain 

Monte Carlo) that can be very computationally heavy for convergency with so many 

parameters. Here are few samples within 95% confidence level.
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Conclusions and Remarks

We performed proof  of  principle of  the 2D phase-space tomography using beam 

centroid data of  multiple kicked beam. For better resolution, we need more kicks in 

different angles.

The Bayesian approach helped us to avoid curse-of-dimensionality problem 

through prior belief  construction that could be done using the leading order theory 

and local minimization. Then the maximum a posterior estimation also could be 

done using local minimization. It also helped us to sample from posterior (to 

visualize uncertainty) without relying on MCMC that is practically impossible with 

so many parameters to infer.

Next, we will work on real BPM data


