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Abstract

The time-series Beam Position Monitor (BPM) data of kicked beam is a function of
lattice parameters and beam parameters including phase-space density. The
decoherence model using the first-order detuning parameter has an exact solution
when the beam is Gaussian. We parameterize the beam phase-space density by
multiple Gaussian kernels of different weights, means, and sizes to formulate the
inverse problem for 2D phase-space tomography. Numerical optimization and
Bayesian inference are used to infer the beam density and uncertainty.



Overview

*Problem and strategy overview




Gaussian Beam
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Decoherence BPM data model

We model BPM data by

(X)y = RX—iP),

iR/ (X —iP)e*“*px p (X — Xo, P — By) dXdP

Assuming slowly varying frequency in the scale of the beam size, the frequency 1s

modeled by
w(AI) = po+mAIl
e



Exact solution for (Gaussian beam

Under the slowly varying frequency assumption: w(AI) = o+ uAl |

an exact solution for Gaussian beam exists
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(General distribution

For general distribution, one need an approximation to extract meaningful
expression for the centroid decoherence motion. As the centroid decoherence 1s due
to the phase-mixing; it is also advantageous to work on frequency domain. Define

DFT like function
T

- 2 S=ERE] e
G(k) = T ; (X), [e7""*] — cos b

where 6 is the phase-space angle of the initial kick such that



Marginalized probability density

One can show that (in the limit of large initial offset compared to the initial beam
emittance: i.e. fo > € ) the marginalized 1D (in the direction of initial offset)
probability density of the 2D probability density of phase-space can be written in
terms of the DFT like function of the centroid data
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This suggest that if we have multiple kicks of different angles &, we can reconstruct

the 2D phase-space.



Gausstan Kernel Density Model

However, the large initial offset ( [g > € ) requirement can be tight due to the physical
beam pipe aperture.

Recalling that we have exact solution for gaussian beam, we parameterize the 2D beam
density model using multiple Gaussian kernels. Each gaussian kernels have 4 parameters: (1)
weight, (2,3) relative locations (x, p) from the beam center, (4) emittance.
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Then, the centroid data of the whole beam is the linear sum of each gaussian
kernel contributions. This translates our problem as parameter fitting on the inverse

problem.



Curse ot Dimensionality

However, the large number of gaussian kernels for good resolution poses the task
of the global parameter fitting of the inverse problem very ditficult due to the curse

of dimensionality.




Bayesian Approach (Briet Sketch)

Our solution is to use the Bayesian approach with the prior from the parameter fitting on

the leading order model:
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The leading order model helps us to initialize and fit the parameters approximately close to
the true solution. Once we fit the parameters on the leading order model, we can build
posterior using

(X), = R / (X —iP) e py p (X — Xo, P — Py) dXdP

Then perform the local optimization to maximize posterior.



Overview

*Detail procedure for the proof of concept

* (Generate virtual beam centroid signal with multiple initial kicks




Virtual beam centroid signals
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Overview

* Construct prior




Construct prior mean: (1) frequencies

Recall

po(x) =~ /2051 |M|§R[G (‘1-/11\/2.31’04—#0) (1’19]
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and notice that the frequency parameter L is not coupled with any other parameters.

This allow us to optimize the frequencies using the following condition (on the
4 BPM data )

/m zpp (x)dz = 0

— 0



Construct prior mean:
(2) 1initial kick strengths and angles

Once we optimize the frequencies M0, we further optimize the nonlinear detuning
parametet, initial kick strengths, angles and betatron function ¢, I, 6, 3 using

the following condition.
[
/ pg (x)dr = 1

oS — XD

Here the nonlinear detuning parameter M1 is determined from least square fit of
the frequencies MO over the initial kicks strengths Iy | Although we have less
number of constraints compared to the parameters to fit, we experienced that when
the 1nitial guess is close to the ground truth, the local optimization often works.



Construct prior mean

. . . 2.04 — Meas param — meas param
DFT hke ﬁlﬂCthﬂ L'lSlﬂg —— true param 2.0 4 —— true param
B true hist Il true hist

roughly estimated
parameters:

oy [, IOa 97 /6

=2 =1 0 1 2 =2 =1 0 1 2

1.759 —— meas param ——— meas param
1504 — true param 2.0 1 —— true param
Bl ftrue hist Bl true hist
1.25 1.5 -
& 1.004
E.. 0.75 1.01
0.50 1
0.5
0.25 1
0.0 -

0.00 ~



Construct prior mean
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Construct prior mean: (3) Gaussian kernels

Once we have fixed o, U1, Lo, 0, B based on the leading order theory, we
continue to fit the parameters gaussian kernels on the leading order theory.
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Construct prior mean: (3) Gaussian kernels
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Construct prior

Once we have prior mean, we construct the prior using normal distribution. We use
independent normal of the parameters fig, 41, Lo, 0, 3 with the standard
deviation from our beliet. For example, since we are building prior from the leading
order theorv that is in the limit of o > € | we choose smaller standard deviation
for smaller /0. Tn other words, we have more confidence on our belief for larger
initial kick.

As for the gaussian kernel parameters, we do not construct prior as it is hard

to choose the standard deviation in a reasonable away



Overview

* Construct posterior




Construct posterior mean

Now we construct posterior mean by model fitting on

(X), =R / (X —iP) e py p (X — X, P — Py) dXdP

Specifically, we construct our likelthood by
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Where £ is the index for each kick and § represent the model parameters including
the parameter quantifying model error and data noise 9 BPM .



Ground truth
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Overview

* Uncertainty



Samples within credential interval

So far we have done point estimate. Since our prior and likelihood are modeled

by gaussian distribution, the posterior is also gaussian. This helps us to sample from
posterior with known credential level without relying on MCMC (Markov chain
Monte Carlo) that can be very computationally heavy for convergency with so many
parameters. Here are few samples within 95% confidence level.
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Overview

*Conclusion and Remarks



Conclusions and Remarks

We performed proot of principle of the 2D phase-space tomography using beam

centroid data of multiple kicked beam. For better resolution, we need more kicks in
different angles.

The Bayesian approach helped us to avoid curse-of-dimensionality problem
through prior belief construction that could be done using the leading order theory
and local minimization. Then the maximum a posterior estimation also could be
done using local minimization. It also helped us to sample from posterior (to

visualize uncertainty) without relying on MCMC that is practically impossible with
so many parameters to infer.

Next, we will work on real BPM data



