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Abstract

Large accelerator facilities must balance the need to
achieve user performance requirements while also maxi-
mizing delivery time. At the same time, accelerators have
advanced data-acquisition systems that acquire synchronous
data at high-rate from a large variety of diagnostics. Here
we discuss the application of ghost-imaging (GI) to measure
beam parameters, switching the emphasis from beam control
to data collection: rather than intentionally manipulating the
accelerator, we instead passively monitor jitter gathered over
thousands to millions of events to reconstruct the target of
interest. Passive monitoring during routine operation builds
large data sets that can even deliver higher resolution than
brief periodic scans, and can provide experiments with event-
by-event information. In this presentation we briefly present
applications of GI to light-sources, and then discuss a poten-
tial new application for colliders: measuring the transverse
beam shapes at a collider’s interaction point to determine
both the integrated luminosity and the spatial distribution of
collision vertices.

INTRODUCTION

Modern accelerator systems record a wide range of diag-
nostics synchronously at high-rates. Traditionally, operators
have exploited such data sets to search for unknown corre-
lations from natural jitter during operation. More recently,
advances in computational methods borrowed from machine
learning point towards a new analysis paradigm in which
operators infer measurements by fitting unknowns from syn-
chronous diagnostics. One such approach is drawn from the
concept of classical ghost imaging (GI), in which a series
of known and varying illumination patterns probe a sample,
and a ‘bucket’ detector measures a scalar value, e.g. total
transmission, scattering, absorption, etc. (Note: we assume
pixelated detectors are not available.) If the illumination
patterns obey certain characteristics (independent pixels,
sufficient degree of variation, etc.), it is possible to recover
a so-called ‘ghost’ picture of the sample.

Broadly speaking, there are three advantages over the
more traditional approach of raster-scanning a small probe
over the sample [1]: First, if the bucket detector has Gaussian
read-out noise, the multi-pixeled illumination patterns may
give higher signal-to-noise ratio, known as the multiplex or
Felgett’s advantage [2]. Second, the reconstruction can be
cast as an optimization task, and make use of prior knowl-
edge to recover the solution in fewer measurements than
would be needed for a raster scan, known as compressive
GI [3, 4]. Third, it may be inconvenient or even impossible
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to create and scan a small probe. For example, scanning
a probe may interfere with operations, or it may be possi-
ble to measure smaller features in the illumination patterns
compared to the smallest achievable size of the scan probe.

For accelerators, the third advantage — leveraging jitter
for passive measurements — has long proved useful. As far
back as the 80s, Lohse and Emma used a forward model
and beam jitter to learn BPM resolutions at the interaction
point of the Stanford Linear Collider [5]. GI now has re-
newed relevance due to advances in the intervening decades
in computational methods (e.g. compressive sensing [3]),
optimization tools (e.g. ADMM [6]), and computational
power (faster CPUs, GPUs), pointing towards efficient solu-
tion of complex problems from large data sets. Just at SLAC,
recent GI applications include solving for spatial maps of
cathode quantum efficiency using drive-laser jitter [7], and
increasing temporal [8] and frequency [1, 9] resolution for
x-ray free-electron lasers using natural jitter in self-amplified
spontaneous emission free-electron lasers.

In this paper, we consider the challenge of measuring
the beam profiles at a collider’s interaction points (IPs) and
speculate that GI can help. The goal is two-fold: First, by
resolving the beam profile, we can potentially assist oper-
ation to create more uniform, tightly-focused beams at the
IPs, as well as provide consistent beam profiles across the
various IPs. Second, if we can recover shot-by-shot measure-
ments and beam profiles we can improve modeling of the
interaction distribution for each event to improve analysis
for experiments. Both goals can be achieved with passive
measurements, without interrupting operations.

We can frame the collider IP problem as a form of ghost
imaging: rather than a varying illumination pattern, we have
a varying offset between two unknown beams, and the bucket
measurement is the total luminosity. The current approach
to measuring transverse beam profiles is to scan the offset
between the colliding beams and fit the transverse beam di-
mensions to the drop in luminosity [10]. The GI approach
switches the emphasis from beam control to data collection:
rather than intentionally controlling the offset, we instead
passively monitor random beam jitter, and use statistics gath-
ered over millions of collisions to reconstruct the profile.

METHOD

Recovering beam parameters from orbit and luminosity
measurements is an example of an inverse problem: The
forward task of calculating luminosity from beam parame-
ters is relatively simple, but the inverse task of predicting
parameters given the luminosity and offset measurements is
challenging. In this note we consider a toy forward model
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to calculate luminosity

Boeal1 12,60 = [av L= 8%), (1)

where v is the vector of transverse positions [x,y], I} »(v)
are the transverse beam densities of the two colliding beams,
and 8 is the vector of horizontal and vertical offsets,
[6§Ck), 6§k)], between the two beams for the k™ collision.
(Note that we ignore longitudinal variation.) Our goal is to in-
vert the relationship to infer the ‘most-likely’ beam densities
given many measurements of offsets and luminosities. With
a dataset consisting of n measurements &, 8y, Bpreq € R”,
the solution to the inverse problem, I, is given by the param-
eters that minimize the difference between the predicted and
measured luminosities, i.e.

I, I = argmin, Y |55pred(11,12, s®y — xR 1, @)
k

where $ﬁfgas is the measured Iuminosity, and
Lored1,15, 8 ®) is the predicted luminosity from
the forward model, Eq. (1), for the k™ collision.

If we represent the beam profiles, I, as a pixelated im-
age, Eq. (2) is a high-dimensional optimization problem
with each pixel a separate parameter. The challenge is com-
pounded by the presence of noise and errors on the measure-
ments, such that even with perfect knowledge of the forward
model, we still expect B,eq and By, to differ. We can
improve the reconstruction through the addition of ‘regular-
ization’ terms to Eq. (2), imposing our prior beliefs about
the solution to constrain the optimization, known as com-
pressive GI [4]. Alternatively, we can impose priors through
parameterization of /. For example, for smooth Gaussian
beams, if we assume the beam sizes are known, we can use
the parameterization

1(v) = exp {—VIR(9)E()R(—p)v} , 3)

in which case we only need to learn four parameters
(1,91, &2, o) to minimize Eq. (2). Here R(¢) is a ro-
tation matrix and the diagonal matrix E (&) imposes the

eccentricity with on-axis elements V1 — 2 and 1/v1 — &2.
If we anticipate more complicated beams we can turn to
higher-dimensional representations, e.g. learning Hermite-
Gaussian representations with the degree constraining the
complexity.

EXAMPLE WITH GAUSSIAN BEAMS

To investigate the feasibility, we take the case of small
jitter in a Gaussian beam using Eq. (3), which makes the
reconstruction challenging due to the small variation in lu-
minosity. For this simple example, we can integrate Eq. (1)
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to find an analytical expression for the forward model
metlB
VB
A=(83+83)[£1e5+efEr —2(&1+ &)+
(8% — 87)efércos[291] + (83 — 87)& €3 cos[2¢,]-
28,8, (3£, sin[291] + £1€3sin[2¢,])
B=[4-2(e} +e3) +4& &0+
efes (1 —cos[2(g) - ¢2)]) ],

£ pred =

“

with shorthand ¢&; = ‘/1 - e?. Note that due to symmetries
of both the Gaussian beams and forward models, there is
not a unique solution, e.g. swapping the parameters of the
two beams (i.e. 1 < 2) has no effect on Eq. (4).

Our goal is to resolve the angle and degree of eccentricity
of both beams. Figure 1 shows example beams with eccen-
tricity of £; = 0.5 at an angle of ¢; = 1.0 from the vertical
for beam 1, and ¢, = 0.7 at an angle of ¢, = 0 for beam 2.
We then simulate 100k collisions with different parameters.
Figure 2 shows examples with zero jitter and noise (top plots)
and moderate jitter and noise (bottom plots). Note that even
the ‘moderate’ level of luminosity jitter is far higher than the
0.1% level observed in asynchronous sub-Hz measurements
at LHC, which average across 10s of millions of collisions.
However 1% may be a realistic jitter level if it is possible to
measure individual collisions.

Beam 1, e=0.5, phi=1.0

Beam 2, e=0.7, phi=0.0
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Figure 1: Simulated Gaussian beams for Fig. 2.

We observe mixed results. Figure 2 shows the negative
log residual for different parameter choices, and as expected
the maximal value is the true solution. However, several
caveats point to difficulties for implementation. First, a scan
with zero luminosity jitter shows potential symmetries that
may lead to non-unique solutions. With the jitter at a still-
optimistic 1%, the eccentricity solutions are only constrained
to an arc (bottom left plot). On the other hand, we have only
presented a simple concept here, and more sophisticated
treatment may find a path forward. For example, integrating
standard luminosity scans (i.e. scans with far higher lumi-
nosity jitter; in fact, this type of scans is already done rou-
tinely during fills at the LHC [10]) may improve constraints,
as would simultaneously fitting data at multiple interaction
points and modeling the evolution of Twiss parameters. Here
we summarize steps towards implementation.
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Figure 2: Negative log of residuals for parameter scan. On
the left, scan of eccentricity for both beams, and on the right,
scan of angle. All plots assume the correct ground truth
value for non-scanned variables (angle at left, eccentricity at
right). Black stars show ground truth values. SNR is defined
as ratio of rms noise to rms variation. Top row shows an
example without jitter or noise to illustrate symmetries, and
lower plot shows the same scan with jitter and measurement
noise included.

Data set size and variation Ideally we would have syn-
chronous measurements of luminosity and orbit for each
collision. Averaging over many pulses is possible, but de-
grades the data in the following ways:

* Longer averaging produces fewer data points.

» Longer averaging decreases the variability in the data,
so more data is needed to solve Eq. (2). Intuitively, the
less variability, the less information contained in each
measurement. In standard linear ghost imaging this can
be quantified by the Gramian of the data matrix.

* If we average over all the stored bunches we only re-
construct the average transverse profile of all bunches.
We lose the knowledge of individual bunch variation,
and also further reduce the amount of variability.

Averaging degrades data quality, both reducing the number
of points and the degree of variation. On the other hand, we
note that 10M collisions corresponds to only 15 minutes of
LHC operation if development of a collision-by-collision
monitor is possible. Even 1B collisions might be possible
if combining data across different buckets. While we want
variability in the orbit, we assume we have no change in the
target beam shape (1) over the course of the measurement. In
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the end, the time-scale over which / changes sets the upper
limit on the amount of data collected.

Non-unique solutions Because of the toy model’s sym-
metry, the model described cannot distinguish between the
two beams, and other symmetries may also pose challenges.
Combining data from multiple IPs may break the symme-
tries, or the solver may require active control of the beam.

Orbit errors The accuracy of the orbit measurements
will determine the resolution of the final reconstruction. In
this proceeding we are using a highly simplistic model, but
a more accurate model (e.g. fitting the orbit throughout the
ring) may also break symmetries causing ambiguities in the
current implementation.

Transverse-Longitudinal correlations Without addi-
tional diagnostics, or perhaps active beam control, we have
no ability to reconstruct the beam’s longitudinal profile.

CONCLUSION

We conclude that the GI approach to measuring beam
profiles from luminosity is intriguing, but requires more
study to assess feasibility. Additional information, for exam-
ple by combining measurements from multiple interaction
points, may be needed to distinguish ambiguities. Inten-
tionally adding small deviations to the orbit — at a level that
does not interfere with operations — or combining continu-
ous jitter measurements with periodic luminosity scans, may
also help. In the latter case, while no longer fully passive,
still has the advantage of predicting luminosity distribution
collision-by-collision. Finally, even if the concept presented
here proves infeasible, we hope this proceeding can spur
additional research into application of GI for colliders.
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