
RecCeiver-ETCD: A BRIDGE BETWEEN ETCD AND ChannelFinder∗

G. Jhang† , T. Ashwarya, A. Carriveau, Facility for Rare Isotope Beams, East Lansing, USA

Abstract
Managing EPICS Process Variables’ (PVs) metadata,

such as the host and the contact, is one of the important
tasks for the operation of large-scale accelerator facilities
with minimal downtime. Record Sychronizer (RecSync)
provides a way to manage such crucial information in an
EPICS Input-Output Controller (IOC). RecCeiver-ETCD is
the server component of the RecSync-ETCD, or an exten-
sion of RecCeiver for ETCD. In the previous work, the client
component of RecSync, or RecCaster, has been extended to
RecCaster-ETCD to store the metadata into an ETCD key-
value store. An important remaining step to the production
use is to introduce a connection between ETCD and Chan-
nelFinder, which is achieved by RecCeiver in the RecSync
system. RecCeiver-ETCD plays the role of the original Rec-
Ceiver in the RecSync-ETCD system. RecCeiver-ETCD is
designed to perform the specific operation, bridging the com-
munication between ETCD and ChannelFinder. In addition,
its simple implementation does not hold it down to Chan-
nelFinder and makes it easy to extend RecCeiver-ETCD out
to the other applications.

INTRODUCTION
An EPICS [1] Input-Output-Controller (IOC) serves Pro-

cess Variables (PVs) containing numerous machine-specific
information crucial to operate large-scale accelerator facil-
ities. Managing PVs’ metadata, such as the server host in-
formation and who to contact, is one of the important tasks
to maintain the facility’s operation time higher by resolving
any issue promptly. One of the methods for managing the
metadata is to use the Record Synchronizer (RecSync) [2]
and ChannelFinder system [3]. ChannelFinder is a simple
directory service providing REST APIs for accessing PVs’
metadata stored in Elasticsearch [4].

RECORD SYNCHRONIZER
The RecSync is a project for synchronizing the informa-

tion in clients with Elasticsearch via a server. The client
and server are called RecCaster and RecCeiver, respectively.
RecCaster is an EPICS support module built with an IOC.
When the IOC starts up, RecCaster waits for the server an-
nouncement from RecCeiver for establishing a connection
to RecCeiver. Upon the successful connection, RecCaster
sends PVs’ metadata to RecCeiver. RecCeiver is a server
written in Python language with Twisted network library for
relaying the metadata to ChannelFinder via ChannelFinder
Python APIs [5].

∗ Work supported by the U.S. Department of Energy Office of Science
under Cooperative Agreement DE-SC0000661.

† changj@frib.msu.edu

RECCEIVER-ETCD
RecCeiver-ETCD is designed to relay the PVs’ metadata

in ETCD key-value store [6] updated by RecCaster-ETCD
into Elasticsearch database via ChannelFinder using Chan-
nelFinder Java APIs [7]. It is composed of three threads
internally: the UDP Broadcaster thread, the ETCD Proces-
sor thread, and the ChannelFinder Processor thread. Each
thread is encapsulated by a fail-safe method that retries every
configured amount of time.

UDP Broadcaster Thread
The UDP Broadcaster Thread broadcasts ETCD server in-

formation to the sub-network periodically. Both the server in-
formation and broadcast period are configured in RecCeiver-
ETCD configuration file. The broadcast feature exists in
the RecCaster while it was not implemented in RecCaster-
ETCD by the previous work [8]. The packet broadcast by
RecCeiver-ETCD has the structure described in Fig. 1.

Figure 1: The Packet Structure of RecCeiver-ETCD UDP
Packet.

Once the packet is broadcast, the UDP listener imple-
mented in RecCaster-ETCD recognizes the packet with its
ID and version number, which are the first two bits and the
third bit, respectively. ID is 2-byte characters ‘RC’ common
for RecSync and RecSync-ETCD while the version num-
bers for the former and the latter are 0 and 1, respectively.
Unlike RecCaster relies only on the UDP broadcast from
RecCeiver to make the connection, RecCaster-ETCD first
uses the server information provided in the environmental
variable. The UDP listener thread is triggered and activate
when configured number of connection failures occurred.

ETCD Processor Thread
The ETCD Processor Thread consists of two processes:

the initialization process and the watching process. The ini-
tialization process runs only once at the beginning of the
RecCeiver-ETCD. It reads all key-values from ETCD and
sends them to Elasticsearch via ChannelFinder Java APIs di-
rectly. The watching process is executed at the same time of
the initialization process not to lose the information while the
initialization process is running. The process watches and
collects the ETCD value changes of keys having “/epics/ca”
as their prefix. The collected data are stored in a shared

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB320

WEPAB320C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3424

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools



Figure 2: Schematic diagram of RecSync-ETCD operation with ChannelFinder. The work described in this paper is
shown as the blue-colored. The operation orders of RecCeiver-ETCD and RecCaster-ETCD are labeled as 1∼7 and a∼d,
respectively. Note that c-1 and c-2 run concurrently and the UDP Broadcaster Thread is atomic.

list for being sent until the initialization process ends. The
watching process runs indefinitely and continuously updates
the shared list whenever there are changes.

ChannelFinder Processor Thread
The ChannelFinder Processor Thread sends the informa-

tion in the shared list mentioned in the ETCD Processor
Thread periodically to Elasticsearch via ChannelFinder us-
ing ChannelFinder Java APIs. Before sending, the shared
list is cloned not to block the shared list from being written
by the ETCD Processor Thread for a long time. As soon
as the cloning process ended, the shared list is cleared and
blocking is released to continue collecting the changes from
the watching process.

Operation Flow
Figure 2 shows the schematic diagram of the communi-

cation among RecCaster-ETCD, RecCeiver-ETCD, ETCD
cluster, and ChannelFinder. The green-colored components
in the IOC box are the implementation of the previous work
in Ref. [8] and the rest green-colored components are the 3rd
party software packages needed by RecSync-ETCD system.
The blue-colored components indicate the implementation
of RecCeiver-ETCD described in this paper.

Start-up stage RecCeiver-ETCD tries to connect the
ETCD server configured in the environmental variable. Fail-
ure to connect makes the process retry periodically every

configured period. Upon the successful connection, the pe-
riodic connection checking process is started and clean-on-
startup and clean-on-shutdown are scheduled as configured
in the configuration file. The UDP Broadcaster Thread is
initiated to send out the packet described in Fig. 1 every
30 minutes (configurable). The ETCD Watching Thread is
started. If clean-on-startup is configured, all the channels
in ChannelFinder are set to PV status property “Inactive”.
Then, the start-up process requests all the key-value sets
from ETCD and pushes those to Elasticsearch database via
ChannelFinder.

Watch and update stage The main purpose in this stage
is to update the changes in the ETCD key-value store to
ChannelFinder. The ETCD Watching Thread watches the
changes with keys having the prefix “/epics/ca” and stores
them in a shared list. Each insertion, update, and deletion
change in ETCD is regarded as a single entry in the shared
list. Each entry is processed sequentially. For example,
the deletion of a PV happens right after the insertion of the
same PV. The insertion update is processed first, then deleted
afterward resulting that the PV’s final PV status property
becomes “Inactive”.

Shutdown stage Once the shutdown signal is received,
all processes stop. Then, entries remaining in the shared list
are updated to ChannelFinder. If clean-on-stop is configured,
all the channels in ChannelFinder are set PV status property
“Inactive” before the shutdown.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB320

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools

WEPAB320

3425

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



OUTLOOK
In this paper only described is the usage of RecCeiver-

ETCD with ChannelFinder. However, RecCeiver-ETCD can
easily be extended for the other applications which provide
REST APIs or Java APIs. Furthermore, RecSync-ETCD
can be implemented with the authentication methods ETCD
provides to ensure secure transactions as already mentioned
in the previous work [8].

SUMMARY
RecCeiver-ETCD is a standalone application written

in Java to build a bridge between the ETCD server and
ChannelFinder. RecCeiver-ETCD provides fail-safe threads
for ETCD connection, ChannelFinder connection, and
updating information so that retries any event on failure
until it succeeds. Although RecCeiver-ETCD has been
developed to communicate with ChannelFinder, its simple
implementation makes it easy to adopt for other needs
beyond ChannelFinder.

REFERENCES
[1] EPICS,
https://epics.anl.gov

[2] RecSync,
https://github.com/ChannelFinder/recsync

[3] ChannelFinder,
https://github.com/ChannelFinder/ChannelFinder-
SpringBoot

[4] Elasticsearch,
https://www.elastic.co/elasticsearch

[5] ChanneLFinder Python API,
https://github.com/ChannelFinder/pyCFClient

[6] ETCD, https://etcd.io

[7] ChannelFinder Java API,
https://github.com/ChannelFinder/javaCFClient

[8] T. Ashwarya, E. T. Berryman, and M. G. Konrad,
“Rec-SyncETCD: A Fault-tolerant Service for EPICS PV
Config-uration Data”, in Proc. ICALEPCS’19, New York,
NY, USA, Oct. 2019, pp. 714–718.
doi:10.18429/JACoW-ICALEPCS2019-TUBPL05

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB320

WEPAB320C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3426

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools


