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Abstract
Machine learning algorithms were used for image and

parameter recognition and generation with the aim to opti-
mise the CLARA facility at Daresbury, using start-to-end
simulation data. Convolutional and fully connected neural
networks were trained using TensorFlow-Keras for different
instances, with examples including predicting Longitudinal
Phase Space (LPS) images with machine parameters as in-
put and FEL parameter prediction (e.g. pulse energy) from
LPS images. The K-means clustering algorithm was used
to cluster the LPS images to highlight patterns within the
data. Machine learning techniques can enhance the way
large amounts of data are processed and analysed and so
have great potential for application in accelerator science
R&D.

INTRODUCTION

CLARA is an existing test facility at Daresbury Labora-
tory; the operational parts can achieve 50 MeV/c electron
beam momentum with the full machine capable of reaching
250 MeV/c. A full energy beam extraction line (FEBE) with
a user station is currently being installed [1]. Shown in Fig. 1
is a possible upgrade to CLARA using high-gradient X-band
RF technology to reach a maximum beam momentum of
1 GeV/c, known as XARA (X-band Accelerator for Research
and Applications) [2]. This would allow for novel undula-
tor light production, attosecond pulse generation, and the
enhancement of current accelerator science via increased
beam momentum and X-band development. Machine learn-
ing algorithms applied to CLARA/XARA would enhance its
capability for R&D by providing rapid access to slow or inva-
sive measurements through virtual diagnostics, and through
more comprehensively exploring its parameter space and
rapidly optimising to desired operating conditions.

Figure 1: Schematic layout of CLARA with potential up-
grade XARA overlaid [2]. The total length is roughly 90 m.
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In this paper, two machine learning techniques were ap-
plied, with the first being a Neural Network (NN) used to
recreate beam images and FEL parameters. NNs are com-
putational systems designed to learn and translate data from
one form to another. A neural network is made up of input
and output neurons with weighted links in between; it learns
to map inputs onto outputs by adjusting the weights between
neurons using an optimisation algorithm. A convolutional
neural network is a widely used extension to neural networks
designed to process two-dimensional data.

An unsupervised clustering algorithm known as K-means
was then used to cluster beam images as the second machine
learning technique. Unsupervised algorithms are used to
cluster un-labelled data according to defining features; the
aim is to find patterns within the data. K-means is one such
algorithm and works by creating k centroids, where k is the
number of clusters chosen by the user. Then, the algorithm
works to minimise the squared Euclidean distance between
each data point and the nearest centroid to it [3].

METHOD
The data used in this study was ∼10,000 start–to-end sim-

ulations of the accelerator and FEL, generated using the
simulation code ASTRA (to the linac 1 exit), Elegant for the
rest, and Genesis for the FEL data [4]. 17 machine parame-
ters (e.g. linac RF phases and amplitudes) were varied up to
the undulator; only parameters that have a particular effect
on the Longitudinal Phase Space (LPS) were changed. Then,
using the 6D bunch distributions produced, LPS images were
created with two different choices regarding extents. The
first, referred to as Region Of Interest (ROI) images, were
created by calculating the maximum and minimum values
of the z-positions and beam energies for each individual
distribution and binning the particles in a 2D histogram de-
fined by these extents to create 100×100 pixel images. For
the other set, the maxima and minima were taken over all
distributions, for a fixed ‘screen size’ (hence referred to as
non-ROI images): 200×200 pixels was chosen to give rea-
sonable resolution and computational speed. For simplicity
this study used only images, so some information is lost for
the ROI set but the extent data has also been used for studies
beyond the scope of this paper.

For the first part of the study, the 200×200 pixel LPS im-
ages were used as input to a convolutional neural network
(Fig. 2), with the corresponding FEL pulse energy and band-
width values as output. This was implemented in Keras
and it consisted of a (3×3) convolutional layer followed by
a (2×2) max pooling layer, repeated 5 times, followed by
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4 dense layers (including the output layer). The first 3 con-
volutional layers had 8 filters, and the last 2 had 16 filters.
The learning rate used was 4 × 10−5. The model trained to
stability within 70 epochs.

Figure 2: The neural network used to predict FEL pulse en-
ergy and bandwidth values from LPS beam images (200×200
pixels). There are 5 convolutional layers and 5 max pooling
layers, followed by 4 dense layers.

Previous studies [5, 6] used NNs to predict LPS images
from machine parameters; the same method was used here
to predict both kinds of images (ROI and non-ROI) sepa-
rately using the same neural network architecture but with
different output neurons. This network (Fig. 3) was also
implemented in Keras and consisted of 5 dense layers, with:
17, 100, 500, 1000 neurons respectively and 10k neurons
in the output layer for the ROI images and 40k neurons for
the non-ROI images. The learning rate used was 4 × 10−3.
The models trained to stability within 60 epochs. In all three
cases: Adam was the optimiser, the batch size used was 100
and Early Stopping Rounds was used with 1000 epochs (set
to minimise loss), dropout layers and learning rate reduction
were used to help decrease over-fitting. The model archi-
tectures were decided after trial and error. The activation
functions used for the hidden layers were leaky rectified
linear units and mean squared error in the predictions was
the cost function. Of the ∼10,000 images, 8244 (90%) were
used to train the model and 916 (10%) for validation.

Figure 3: The neural network used to predict LPS beam
images (ROI and non-ROI) from 17 machine parameters.
There are 6 dense layers.

For the second part of the study, Principal Component
Analysis (PCA) was first applied to both kinds of beam im-
ages with variance at 0.98. PCA is a method that decreases
the dimension of the input data while preserving most of the
important information, allowing the following algorithm to
run faster. The images were then separated into 8 clusters
using K-means (with a defined random state to ensure con-
sistency in the clusters), to find out if there were any patterns
within the image dataset and the corresponding parameters.
The number of clusters used was established after using the
elbow method. The method was also extended to 2D binning
by both ROI and non-ROI cluster for further analysis.

RESULTS
Figure 4 shows how the predicted FEL parameters (FEL

pulse energy and bandwidth) from the CNN compared to
the actual values. Figures 5 and 6 show the mean absolute
percentage error histograms of the FEL pulse energy and
bandwidth predictions.

Figure 4: Scatter plot of predicted FEL pulse energy and
relative pulse bandwidth (red) against real values (blue).

Figure 5: Mean absolute percentage error histogram of FEL
pulse energy. The mean percentage error is 30%.

Figure 6: Mean absolute percentage error histogram of FEL
bandwidth. The mean percentage error is 17.1%.

The FEL pulse energy vs. bandwidth scatter plot in Fig. 4
shows the predicted values (red) and the corresponding true
values (blue) to be in good agreement as the general shape
of the predicted spread of values overlap well with the ac-
tual values. The mean absolute percentage error histograms
for pulse energy and bandwidth shown in Figs. 5 and 6 re-
spectively, are positively skewed; this suggests accuracy in
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the predictions. For the pulse energy histogram, 71.7% of
test values have a percentage error of 20% or less and the
mean percentage error is 30%; for the bandwidth histogram,
70.6% of test values have a percentage error of 20% or less
with a mean percentage error of 17.1%. Neural network
models will give slightly different results each time they are
run although the percentages mentioned above varied only
by a few units with the model used.

For the LPS image prediction, as shown in Fig. 7, the
position of the predicted beam in the non-ROI beam image
was picked up well by the model but with some error in
its brightness and shape, in comparison to the actual image.
The general shape of the predicted beam was well defined for
the ROI beam image with variations in brightness identified
by the model too. In general, the ROI beam image was
predicted more accurately as the mean squared error was
significantly lower than for the non-ROI case. This disparity
may be because the non-ROI images contain more blank
space and poorer resolution of the beam. Subsequent work
beyond the scope of this paper therefore used ROI images in
combination with scalar position/energy extents, as in [5, 6].
The 2D matrix of common beam images between clusters
in Fig. 8 shows that the ROI beam images were clustered by
the slope of the beam mainly and the non-ROI beam images
were clustered depending on the width of the beam (beam
duration) or its vertical position on the screen (beam energy).
The ROI beam images were distributed evenly within these

Figure 7: Example predicted and real LPS beam images
(vertical/horizontal axes are energy/time). a) Left: Predicted
non-ROI beam image. Right: real equivalent. b) Left: Pre-
dicted ROI beam image. Right: real equivalent.

Figure 8: The labelled columns and rows represent the first 3
ROI clusters and 2 non-ROI clusters respectively, each with
two example beam image pairs common to those clusters.

clusters but the model had trouble clustering the non-ROI
images with smaller and less-defined shapes of the beam, so
the non-ROI clusters were unevenly populated.

Examining the average machine parameters within each
cluster showed a relationship between the parameters and
the beam position/shape (not shown here). For the non-
ROI beam images, the linac amplitudes corresponded to the
energy level (vertical position in the image). For the ROI
beam images, the linac phases correspond to the gradient
of the beam. The relation of the individual clusters to FEL
bandwidth is shown in Fig. 9. Clear regions of clusters can be
seen suggesting that the clustering algorithm distinguished
features relevant to FEL performance in the LPS images.

Figure 9: FEL bandwidth and electron beam energy (proxy
for wavelength) for all simulations. Each colour corresponds
to a different cluster of the 64 defined by the 2D ROI/non-
ROI image clustering (some contain very few points).

CONCLUSION

The model predicted the majority of FEL parameters accu-
rately with low error. The recreated beam images were also
very representative; they captured the beam image pattern
and brightness well (in the case of the ROI image) and the
position of the beam was accurate for the non-ROI beam
image. The patterns in the beam images were also well
separated by the clustering algorithm. We plan to apply
the neural network to the accelerator as a virtual diagnostic
tool, allowing beam images and corresponding parameters
to be available quickly and easily. The clustering algorithm
could be used to create a collection of potential operating
conditions for both users and operators to select from, which
for each cluster relates FEL performance and beam images
back to the required machine settings. The next step for this
work will be to transfer these techniques from simulations to
the real machine, where issues such as image artefacts and
variable machine performance over time will be present. It
is anticipated that further machine learning techniques such
as artefact removal and transfer learning will be of use.
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