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Abstract
The Low Energy RHIC electron Cooler (LEReC) is a

novel, state-of-the-art, electron accelerator for cooling RHIC
ion beams, which was recently built and commissioned.
Beam dynamics in LEReC differs significantly from conven-
tional electron coolers. Optimization of cooling with LEReC
requires fine-tuning of numerous LEReC parameters. In this
work, initial optimization results of using Machine Learning
(ML) methods - Bayesian Optimization (BO) and Q-learning
are presented. Specially, we focus on exploring the influence
of the electron trajectory on the cooling rate. In the first part,
simulations are conducted by utilizing a LEReC simulator.
The results show that both methods have the capability of
deriving electron positions that can optimize the cooling
rate. Moreover, BO takes fewer samples to converge than the
Q-learning method. In the second part, Bayesian optimiza-
tion is further trained on the historical cooling data. In the
new samples generated by the BO, the percentage of larger
cooling rates data is greatly enhanced compared with the
original historical data.

INTRODUCTION
The main purpose [1] of the Low Energy RHIC electron

Cooler (LEReC) is to increase a collision rate at RHIC. Since
its commissioning, LEReC has increased the event rate at
RHIC significantly.

LEReC is the world’s first RF-based electron cooler. The
layout is schematically shown in Fig. 1. After exiting the
400 keV gun the electron bunches are accelerated to 1.6 −
2 MeV (depending on the energy of the cooled ions) in a
superconducting RF cavity. The electrons are transported
first to the cooling section in the “Yellow” RHIC ring and
then, passing the 180 degree bend, to the CS in the “Blue”
RHIC ring, thus cooling the ion bunches in both rings of the
collider. Finally, the electron beam is extracted from the Blue
CS and dumped in the beam dump. The electron bunches
are repeated with 704 MHz frequency and are “packed”
into 30 − 36 bunch macrobunches repeated with 9 MHz
frequency, which matches the frequency of the RHIC ion
bunches. Hence, on its passage through the CS each ion
bunch is interacting with the electron macrobunch containing
30 electron bunches.

The main goal of this work is to quantitatively analyze
the cooling performance in the LEReC system, and with the
rapidly growing applications of Machine Learning (ML),
explore possible ways to improve the cooling rate (make the
∗ Work supported by Brookhaven Science Associates, LLC under Contract
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† ygao@bnl.gov

Figure 1: LEReC system layout (not to scale).

cooling process faster). To avoid interrupting the normal
operations of the real system, a LEReC simulator developed
locally [2] is used for the simulation.

Specially, Bayesian Optimization (BO) and Q-learning
are used.

Bayesian optimization is mostly used to solve black box
optimization. In such cases, the form of the objective func-
tion 𝑓 is unknown and it is usually very expensive to sample
from 𝑓. BO method can optimize the objective function while
minimizing the number of samples drawn from 𝑓.

Bayesian optimization has been applied in a broad variety
of fields, such as engineering design, environment science,
robotics and machine learning, financial market, etc. Some
BO applications are summarized in [3].

Q-learning [4] is an off-policy reinforcement learning
algorithm, which is usually used to solve problems formu-
lated as Markov Decision Processes (MDPs). The goal of
Q-learning is to develop a policy which guides the agents to
collect as many rewards as possible over the entire course
of the process.

Q-learning has a wide range of application fields, such as
engineering, artificial intelligence, manufacturing, market-
ing and advertising, etc. However, the nature of the standard
Q-learning (using a Q table) limits the problem dimension
it can apply to. Another famous variant of Q-learning called
Deep Q-learning addresses this problem by replacing the
Q-table with a neural network [5, 6].

SIMULATION EVALUATIONS
In this section, we present the simulation results of the

cooling rate optimization experiments. We conduct the sim-
ulation under some common assumptions.

• Since this work only considers how electron positions
affect the cooling rate, all other properties’ parameters
that could potentially affect the cooling rate are kept
fixed, such as beam energy, number of particles, magnet
strength, etc.;

• Ion beam is assumed to be centered with respect to the
cooling section;
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• To avoid disrupting the normal operations of the real
system, a system simulator is used to output the cooling
rate1 when given a set of electron positions.

Here the cooling rate is defined as how quickly the ion
beam’s emittance changes. A negative rate means the emit-
tance is decreasing, and vise versa. Hence the goal of the
experiment is to achieve the largest negative rate.

Simulation Scenario
This simulation scenario considers a realistic case in

which the electrons travel the same way as in the real system,
as shown in Fig. 2. There are 8 Beam Position Monitors
(BPMs) along the cooling section. Each BPM reports 2D
data points - x and y coordinates of the electron beam. As
stated in the common assumptions, only y-coordinates is
considered and has a range of [−3, 3] mm. The correspond-
ing x-coordinates are set to 0. Ions are always in the center
positions (𝑥 = 0, 𝑦 = 0).

Figure 2: Scenario 2 illustration.

The goal in this scenario is to find out what features of the
electrons’ positions tend to produce better cooling results.
Specifically, we study the Root Mean Square (rms) and the
Standard Deviation (std) of the electron positions2.

First, the Bayesian model is trained on 2100 random data
points3. After training, the Bayesian model is used to sample
10 points. The result is shown in Fig. 3. The training data
are plotted in light blue, and the Bayesian samples in red. As
we can see, the Bayesian samples have an obviously better
average cooling rate value. It indicates that the model learns
a right direction to optimize the cooling rate.

Next, we analyze further the rms and std of the electron
positions samples. For each input sample, the rms and std
of the 8 BPM positions are calculated and plotted with the
corresponding cooling rate. The result is shown in Fig. 4.
The top figure shows the rms value distribution, and the
bottom one shows the std value distribution. The random
historical samples are plotted in light blue and Bayesian
samples are in red. As we can see, the historical data do not
have any obvious pattern, randomly evenly distributed. On
the other hand, the Bayesian samples have a clear pattern that
1 Since the transverse plane and the longitudinal plane are considered

symmetric, optimizing the cooling rate in one plane entails optimization
in the other. Without loss of generality, in this simulation we choose the
transverse plane cooling rate as the optimization objective.

2 The rms value measures in average how far away the electron trajectory is
from the ions’. The std value measures how much the electron trajectory
varies during one cooling co-traveling with the ions. Those two features
combined can basically summarize any particular electron trajectory, and
hence are used for analysis.

3 More analyses are needed to decide the lower bound of the training data
size.

most of their rms and std values are close to 0. It implies that
we have chosen the right features for the model to learn. It
indicates that an electron trajectory which is closer (smaller
rms) to the ion beam and has less variations (smaller std)
tends to generate better cooling results, which matches our
expectation.

The Q-learning process exhibits a similar behavior. As
shown in Fig. 5, it starts at a random state and gradually
reduces both the rms and std values to optimize the cooling
result.

Figure 3: Data distribution of both training samples and
Bayesian samples.

Figure 4: Comparison of two features abstracted from the
BPM positions.

Figure 5: Q-learning simulation results of scenario 2.

EXPERIMENTS ON THE REAL DATA
From the above simulation results, we can see that both

the Bayesian method and the Q-learning algorithm optimize
the cooling rate. Moreover, the Bayesian method runs faster,
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which just needs 10 samples to converge whereas the Q-
learning takes hundreds of steps.

In this part, we further validate the Bayesian method’s
performance by optimizing the cooling data from the real
system.

Real Cooling Data
Historical cooling data are extracted from the logging

system, as shown in Fig. 6. The x-axis is the calendar time,
and the y-axis is the transverse ion beam size. The increase
in beam size in the middle corresponds to dumping the ion
beam and refilling RHIC with new ion beam. Hence the
figure shows cooling data over two stores. As we can see, the
ion beam size is decreasing during each, hence the cooling
is working.

Figure 6: Historical cooling data from two stores.

Both during an individual store and store-to-store, numer-
ous RHIC and LEReC parameters are changing, such as the
ion bunch intensity, magnet settings, etc. To focus only on
the aspect of trajectory alignment, only a short period of
data are actually used for training the Bayesian model so that
the beam conditions stay the same during that period. Here
we take 100 seconds worth of data (100 samples) right after
the cooling starts as the inputs for the Bayesian algorithm.

The changing rate of the transverse beam size is used as
an indicator of how good the cooling is, and is calculated as
𝜆 = (1/𝛿)(𝑑𝛿/𝑑𝑡). The calculated changing rates4 of the
short period of data and its distribution are shown in Fig. 7.
As we can see, the data resembles a Gaussian distribution
with a normalized mean of 0.

Figure 7: Changing rates distribution of the short period of
cooling data.

4 The actual changing rate values have been normalized using the z-score
normalization, but that does not affect the shape of the data.

Build the System Approximation Model
A neural network is used as an approximation model of

the system. Section shows that two features are very related
to optimizing the cooling rates, i.e. the root mean square
and the standard deviation of the electron positions. Thus,
the neural network takes those two features (both in hori-
zontal and vertical directions) as the inputs, and outputs the
corresponding normalized cooling rate.

After trying several combinations of the network hyper-
parameters5 and picking the one with the least validation
loss, the final network structure contains two hidden layers,
with 10 nodes in the first layer and 6 nodes in the second. It
is then trained on a historical cooling data set with size 500.

Simulation Results Bayesian optimization is used to
generate 100 samples, and the sample distribution is shown
in Fig. 8. As we can see from the second plot, the number of
samples (in percentage) with larger cooling rates is greatly
improved, thus validating the effectiveness of the procedure.
The mean value of the Bayesian samples is −1.65.

Figure 8: Population distribution of the Bayesian samples.

From the first plot we can see that the new samples tend to
converge to a lower bound of the cooling rates computed by
the Bayesian method, but the margin is wide. That partially
results from the low accuracy of the neural network model.
Adding more training data and including more variables (e.g.
ion intensity, electron current and energy, etc.) to the model
could help to further improve the result.

CONCLUSIONS
In this work, we examine the potential applications of

machine learning techniques in optimizing cooling rates in
the LEReC system. In the first part, simulations are con-
ducted to demonstrate that both the Bayesian method and
the Q-learning algorithm can optimize the cooling rate, and
the Bayesian method converges faster. In the second part,
the Bayesian method is further tested by using real system
cooling data. The result shows that the method effectively
improves the number of samples with larger cooling rates,
which further validates its performance. This work also
serves the purpose of experimenting with machine learn-
ing techniques in order to prepare for the transition from
simulation to implementation in the live LEReC system.
5 Such as the number of layers and neurons, the loss function, the optimizer

and learning rate, etc.
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