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Abstract
Monitoring the storage ring betatron tunes is an impor-

tant task for stable machine operation. For this purpose
classical, shallow (non-deep), feed-forward neural networks
(NNs) were trained with experimental machine data as well
as with simulated data based on a detailed lattice model of
the DELTA storage ring. Comparable tune correction ac-
curacies were obtained with both data sources, both in real
machine operation and for the simulated storage ring model.

INTRODUCTION
DELTA is a 1.5-GeV electron storage ring facility oper-

ated by the TU Dortmund University producing synchrotron
radiation ranging from THz to the hard x-ray regime [1,2].
Due to thermal orbit motion and magnetic current-dependent
field changes, the tunes may vary during machine operation.
Therefore, automatic tunes correction is an essential task
especially for the DELTA storage ring, as otherwise sudden
beam losses can occur.

To provide a precise, reliable and fast tune reading, the
complete measurement setup was renewed in 2006 [3]. It is
based on broadband beam excitation with an diagonal kicker
magnet (kick in both x,y-planes at once) and measurement
of the relaxation betatron oscillations turn-by-turn. The
betatron frequency detection utilized a classical numeric
approach applying fast Fourier transform and Levenberg-
Marquardt algorithms for data fitting. Thus, a tune measur-
ing accuracy of better than 2 ⋅ 10−5 can be achieved [3].

A PID-tune feedback loop based on this measurement
compensates for tune shifts. This method is regularly in use
since many years as the standard tune control method at the
DELTA storage ring.

MACHINE LEARNING APPROACH
Simulation Results

An alternative approach is the application of machine
learning (ML) methods. For this purpose, simulations were
initially executed to identify if there exists a ML-trainable
correlation between quadrupole strength variations and cor-
responding tune shifts. A detailed lattice model of the
DELTA storage ring served as the basis for x,y-coupled
linear optics and tunes (𝑄𝑥, 𝑄𝑦) computations within the
Accelerator Toolbox (AT) framework [4, 5]. The lattice con-
tains all main accelerator components including all insertion
devices (IDs) such as the superconducting asymmetrical
wiggler magnet (SAW) [6]. It is mainly composed of a se-
quence of so-called triplet unit cells arranged in the arcs
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of the racetrack-shaped storage ring [7]. In order to mini-
mize optics variations in the straight sections, exclusively 7
quadrupole families installed in these unit cells are used for
tunes control. Thus, a total of 3 horizontally and 4 vertically
focusing quadrupole families can be operated independently
by dedicated power supplies.

For simulations, the strengths of these quadrupole fam-
ilies were randomized, uniformly distributed within four
interval limits (±0.1%, ±0.5%, ±1%, ±2%), whereby these
limits have also been uniformly randomized. This leads to
Gaussian-like distributions without outliers beyond the inter-
val limits and thus avoids the risk of beam losses in the later
application on real machine operation. For each set of limits,
3000 related tunes were computed via the AT-framework
(see Fig. 1).

Figure 1: Distribution of 3000 tune calculations for
quadrupole settings randomly varied by ±1% for two cases,
with SAW switched on and off, respectively. The tune is
vertically shifted due to strong edge focusing effects of the
SAW.

With the results of overall 12000 simulations, classical
3-layer, fully connected feed-forward neural networks (NNs)
were trained (see Fig. 2). They consists of 2 input neurons
(tune shifts: Δ𝑄𝑥, Δ𝑄𝑦), neurons in one hidden layer (op-
timal quantity determined by trial and error) and 7 output
neurons (quadrupole strength variations: Δ𝐾). The non-
linear hyperbolic tangent serves as the network transfer
function between the input and hidden layer and a linear
transfer function was applied between the hidden and out-
put layer. The NNs were subjected to supervised training
with a variety of training methods [8–11]. Best results were
achieved with a conjugate gradient backpropagation with
Polak-Ribiére updates [9]. Corresponding learning curves
are shown in Fig. 3(a) as an example. The learning perfor-
mance is rated by the mean square error (mse) of the NN
output: mse = 1/𝑃 ∑𝑃

𝑝=1 1/𝑁 ∑𝑁
𝑛=1(𝑜𝑝𝑛−𝑡𝑝𝑛)2. It sums up

the square difference between all target (𝑡) and NN output (𝑜)
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neurons (𝑁) for all training patterns (𝑃). With increasing
number of ’full’ batchsize backpropagation iterations (80%
of all data pairs 𝑃) the mse of the network was reduced by
more than two orders of magnitude. The validation learn-
ing curve (green line) demonstrates that the NNs can be
trained by simulated data and they are able to generalized
the correlation between tune shifts and quadrupole strength
variations. The training regression coefficient is calculated
to 𝑅 = 0.65.

Figure 2: Three-layered (input/hidden/output) NN topology
to be trained for the automated tunes control.

Figure 3: Training performance of different data sets deter-
mined by the mean square error (mse). The trainings were
performed with a batch size of 12000 simulated (a) and about
600 experimental (b) data with different backpropagation
learning algorithms [8–11].

Subsequently, the NNs were verified with the accelerator
model. Figure 4 shows the tune matching for an arbitrary
goal tune as an example. The initial tunes were defined by
the SAW status (switched on/off). In both cases the desired
goal tune was reached iteratively. The number of steps is ad-
justable. In principle, smaller demanded tune shifts (< 0.01)
can be performed in larger steps (less iterations). The step
size resolution essentially depends on the related data quan-
tity of corresponding step widths during NN training.

Application in Real Machine Operation
On the basis of the simulation studies described above,

corresponding experimental data were recorded during real
storage ring operation. Again, only the current set values of
the quadrupole families in the arcs were randomly changed

Figure 4: Example for verification of NNs trained by simu-
lated data and applied to the simulated storage ring model.
The desired goal tune was reached in iterative steps from
different start values, SAW switched on and off, respectively.

and subsequently the associated tunes were measured with
an accuracy of better than 1 ⋅ 10−4 [3]. To minimize the
probability of beam losses due to, e.g., large tune jumps, the
variation interval of the quadrupole settings was limited to
±0.5% for each power supply family. During a machine run
of about 2 hours, more than 600 data pairs were recorded.

The NN layout described above (see Fig. 2) could also be
used to successfully train with these measured experimental
data (see Fig. 3(b)) [8–11]. Because the measured data
are more noisy than data from simulations, the regression
coefficient is reduced to 𝑅 = 0.45.

Neural Network Validations
Although the regression correlation is smaller in com-

parison to simulation calculations, these trained NNs were
still tested to determine quadrupole changes for desired tune
shifts in real machine operation. Figure 5 demonstrates two
successful examples for storage ring tune controls, with the
SAW switched off and on, respectively.

In general, NNs were able to calculate the correct
quadrupole settings to reach the desired target tunes in just a
few steps. But since the quadrupol power supplies cannot be
controlled synchronously in real time, the new quadrupole
set values must be approached in smaller steps. After each
single step, the tune was determined again (see numbered ac-
tual tunes in Fig. 5) and the NNs predicted the next step until
the desired goal tune was reached iteratively. Nevertheless,
this method is not always successful either, since, as with the
standard PID method, harmful resonances can be crossed, as
indicated by the resonance lines in the 𝑄𝑥,𝑦-tune diagrams.
In the shown examples, the goal tunes were reached in 10 re-
spectively 50 steps with an absolute error of less than 4⋅10−3.
The step size depends on the demanded total tune shift and
the quadrupole variation limits during training. Returning
from the goal tune to the initial start tunes was also possible
analogously.

Finally, it was examined whether it is also possible to
perform tunes control of the real storage ring with NNs
only trained by simulated model data; and vice versa, NNs
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Figure 5: Validations of NNs trained with experimental data
and applied to real machine operation. Two experiments
demonstrate tune matching from start to goal tunes without
beam losses. In the first experiment, 10 steps were performed
(SAW switched on, red rectangular markers) and in the sec-
ond test 50 steps were executed (SAW switched off, green
diamond markers).

only trained with real machine data and then applied to the
simulation model. This should be possible as long as the
relationship between quadrupole variation and tune change
in the linear storage ring model is similar to that of the real
machine. Here, the correct conversions of model simulation
parameters to real magnet power supply current settings and
vice versa is an important task. The corresponding recalcula-
tions were performed by a Matlab version of the conversion
program “i2k” [6, 8, 12]. The program also takes non-linear
magnetic saturation and cross-talk effects of the combined
function magnets into account [12]. Figure 6 illustrates a
typical tune matching application as an example. It is com-
parable to the validation shown in Fig. 5, which has been
obtained with real machine data exclusively. This example
demonstrates, for the first time at the DELTA storage ring,
that NNs trained by simulated model data can also be used
for controlling real machine processes. In an analogous man-
ner, it was also possible to use NNs trained by measured
data to perform tune control on the simulated storage ring
model (see Fig. 7). This result corresponds to the verifica-
tion example shown in Fig. 4. As previously indicated, the
step sizes can be adjusted within certain limits essentially
determined only by the value range of training data.

So far, only difference data (Δ𝑄𝑥,𝑦 and Δ𝐾𝑄𝐹,𝑄𝐷) with
small changes (approx. 1%) were used for NN training. As
long as the correlation of these relative changes (gradients)
is similar for a wide range of optics settings (i.e., abso-
lute tunes), this ML technique is applicable in a wide tune
workspace of the DELTA storage ring, without having to
retrain the NN.

SUMMARY AND OUTLOOK
At the electron storage ring DELTA, it could be shown that

trained NNs can also be used for automated tunes adjustment.
The network training was carried out with data recorded

Figure 6: Example for the validation of NNs trained by
simulation data and applied in real accelerator operation.
The desired goal tune was gradually approached in 50 steps.

Figure 7: Example for the verification of NNs trained by
real machine data. The goal tune was reached in 25 itera-
tions. NNs were applied to the simulation model with SAW
switched on and off, respectively (compare to Fig. 4).

during real machine operation as well as with simulation
data based on an accelerator model. With both data sources,
comparable tune controlling accuracies were achieved in
real machine operation.

In principle, the ML method presented in this article can
also be transferred to other accelerator optimization tasks.
Varying the sextupole strengths and measuring correspond-
ing chromaticity changes is one example. NN trained by
such data can be applied to adjust desired chromaticities.
A similar method could also be applied to the adjustment
of beam coupling and the associated beam size [13]. For
this purpose, one would have to vary the strengths of skew
quadrupoles and determine the related coupling change.
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