
THE TRIP EVENT LOGGER FOR ONLINE FAULT DIAGNOSIS
AT THE EUROPEAN XFEL

J. H. K. Timm∗, J. Branlard, A. Eichler, H. Schlarb
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
The low-level RF (LLRF) system at the European XFEL,

DESY, is of major importance for high-performant and reli-
able operation. Faults here can jeopardize the overall opera-
tion. Therefore, the trip event logger is currently developped,
- a fault diagnosis tool to detect errors online, inform the
operators and trigger automatic supervisory actions. Fur-
ther goals are to provide information for a fault tree and
event tree analysis as well as a database of labeled faulty
data sets for offline analysis. The tool is based on the C++
framework ChimeraTK Application Core. With this close
interconnection to the control system it is possible not only
to monitor but also to intervene as it is of great importance
for supervisory tasks. The core of the tool consists of fault
analysis modules ranging from simple ones (e.g., limit check-
ing) to advanced ones (model-based, machine learning, etc.).
Within this paper the architecture and the implementation
of the trip event logger are presented.

INTRODUCTION
Fault detection plays an important role in high-

performance and safety critical process [1] the operation
of particle accelerators. Early detection of faults allows for
early intervention, either from the operator himself or auto-
matic intervention from the system. It further avoids fault
progression and thus can prevent long down-times. It is not
only of interest to detect faults, but also to understand the
root of the fault to take the respective measure. And finally,
the goal is to proactively prevent faults, e.g., by predictive
maintenance. This requires not only the detection and root
cause analysis but also a model for prediction.

The prerequisite for early fault detection is to have the
appropriate sensor information at run time. In many cases
however, it is impossible to relate abnormal behavior seen
in one individual sensor signal to the root cause of a fault, as
it might be reasoned by different root causes. Furthermore,
a fault can quickly propagate through the system leading to
a cascade of subsequent faults. Thus, for root cause anal-
ysis at best all sensor data involved needs to be monitored
jointly and synchronized, and further analysis of the data is
necessary to identify the root cause. This analysis can range
from a simple limit checking of one single sensor signal to
a neural network analysis of all the available data.

With the trip event logger we propose a modular architec-
ture for fault detection and root cause analysis, that allows to
easily switch between different of these analysis modules and
even having them run redundantly to compare different anal-
ysis methods. Further requirements of the trip event logger
∗ jan.horst.karl.timm@desy.de

are that it has to be well integrated in the existing infrastruc-
ture. For the European XFEL this requires an integration
into the control system DOOCS [2] using the infrastructure
of ChimeraTK Application Core [3, 4]. This does not only
allow to possibly apply to different control systems (e.g.,
EPICS) but also allows to intervene into the control system,
which will be necessary looking towards automatic failure
handling and prevention in the future. Further details on the
implementation are provided in the next sections.

As discussed above, the trip event logger provides the
infrastructure to facilitate deployment of fault detection and
analysis tools. In order to also support the development of
such analysis tools, the trip event logger needs to be able to
be tested offline on recorded data. Therefore, we provide an
offline module (using the same code basis) that also includes
an adapter to a High Performance Computing (HPC) cluster
for efficient analysis. In order to collect a data base with
interesting events for further understanding and algorithm
development, the possibility to automatically take labeled
snapshots is a further desired functionality.

The proposed protocol for fault handling is shown in Fig. 1,
for which the trip event logger provides the infrastructure.
First, we will discuss this protocol in detail in the next sec-
tion and report on the implementation details, we want to
summarize the intended goal of the trip event logger. The
trip event logger should not only support the operator in fault
handling or even prevent faults to occur, it should also help
to develop the necessary analysis algorithms therefore.

INTERNAL ARCHITECTURE
AND PROTOCOL

At the European XFEL, the control system DOOCS [2]
is used. Each control system parameter or signal is made
accessible in DOOCS and can be assessed by the trip event
logger via the fault state base module as shown in Fig. 1
on the far left. These signals can be of different type, e.g.,
Boolean, integers or time series. The fault state base mod-
ule contains the different analysis modules, which can all
consider different algorithms, monitor different subsystems
and focus on different type of root causes. For each anal-
ysis module one fault state needs to be defined. Different
intermediate states (warnings, etc.) can be defined if needed.
If the module is neither in the faulty nor in an intermediate
state, it is in normal state. In case of a transition of a state
into the faulty state, the state machine triggers a fault report.
Then, the trip event report group summarizes all necessary
fault information, i.e., the timestamp, the location and the
assumed root cause.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB293

WEPAB293C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3344

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T27 Low Level RF



Values (if …)
● Max crossed 

● from above
● from below

● Min crossed
● from above
● from below

FaultStateCollector
ApplicationModule

Sort Report in PID /
(Trigger handler /
trigger logic (fta))

Telegram
Receiver

snap

DAQ
Traces 

(loops ifs ...)
-Quench

-Pulse cut
…

X
F
E
L

D
O
O
C
S

C
H
A
N
N
E
L
S

Fault Telegram
DB

FaultStateBaseModule
ApplicationModule

Failure probabilities
fault tree diagram

…

events

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

TEL-G
Trip Event Logger

GUI
Human analysis

+ C++ based analysis

Boolean, Values, Traces

● Several blocks of one 
category possible 
(multishredding)

● Each block has its own logic 
(looks at same channels, but 
telegram is different)

● Configurable, maybe different 
modes (minimum, more 
attention, everything)

● C++ based analysis should be 
easily integratable

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

TRIPEVENT.STATE
*normal
*info
*fault
*warning

● if you look at all channels, one 
error results in a cascade of 
telegrams

● learn which analyses and 
channels detect certain errors 
on the efficientist

● with time you can switch off 
redundant channels

Machine learning

Bool
-direct

-transition direction
(state changed)

TripEventReportGroup
VariableGroup

Figure 1: The basic objects of the trip event logger are shown, as well as the protocol for fault detection and for the
development and improvement of the root cause analysis.

These reports are then collected in the fault state collector.
The fault state collector should also include a trigger for
the acquisition of so called snap-shot data for archiving and
offline analysis. In an idealized world with exact timestamps,
sorting the reports by time should lead to an event tree with
the report in the first place defining the root cause. In prac-
tice, however, this will not work because, for example, the
analyses are not yet sophisticated enough or the timestamps
of the various subsystems are not synchronized precisely
enough. It is also conceivable that a root cause exists that
is not yet known by any analysis module. To address this,
an extended analysis is required in the fault state collector
that is, for example, trained on insufficient synchronizations
between the various subsystems or can also compensate for
other deficiencies that have not yet been taken into account.
It would be desired if the fault state collector also provides
some level of certainty with respect to its event tree analy-
sis, so that for events with low certainty, an expert could go
manually through the reports and through the snapshot data.
If the real root cause is found, a respective analysis mod-
ule needs to be developed or adapted accordingly. Thereby
the performance of the trip event logger is continuously
improved.

IMPLEMENTATION DETAILS
The trip event is implemented in C++ building upon the

ChimeraTK Application Module [3]. The objects described
in the previous section, e.g., the fault state base module or
the fault state collector, are objects in sense of C++ with
the corresponding classes inheriting from the ChimeraTK
Application Module.

Here only the most important functions of ChimeraTK
are mentioned, which are important for this project. The
extensive back end of ChimeraTK Application Module pro-
vides access to the most common control systems, such as
DOOCS, OPC-UA, EPICS, which facilitates the transfer to
other accelerators. In addition, the close interconnection to
the control system enables feedback to the machine. This is
a key requirement with regard to automatic fault handling
and prevention, which are the defined long-term goals of the
trip event logger. Furthermore, with ChimeraTK Applica-
tion Module, if the resources of the front-ends allow it, you
can run a fault state base module directly on the front-end
without the time-delays induced by the data transfer as well
as the limitations by the data rate. Moreover, multithreading
and scalability are also directly given as these are also basic
parts of ChimeraTK.

Figure 2 shows an analysis module in the middle of
the figure, which is a standalone object, independent of
ChimeraTK. It is used by the trip event logger within the
fault state base module for online analysis as well as for
offline analysis by the respective tool, called Ladybug. So
within the analysis modules some standard functions have
been defined which are used by both applications. Ladybug
is a collection of tools and libraries to run the event analysis
also offline over the snap-shot data with the possibility to
use an HPC cluster. The tool is provided within a Docker
container that contains all the required dependencies, in-
cluding those of the analysis module. The container can be
built from a Dockerfile, so dependencies can be easily added,
or removed. The core program, Ladybug itself, automati-
cally recognizes various data formats, such as HDF5 and

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB293

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T27 Low Level RF

WEPAB293

3345

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Trip Event Logger

ChimeraTK
Application Core
Analysis Module

TRIPEVENT
Reports
States

Analysis Modules

- C++
- MATLAB

(-PYTHON)
(-NN)

-…

setData(&raw)
setData(&ttf2_daq_getdata)

GetParameter()
Calculate()

WriteResults(“results.h5”)
Evaluate() → state

Data Sets
For long term use

-Labled data
-Trainings data
-Simulated Data
.raw (MCS DAQ)

.hdf5

DOCCS DAQ Snap
Sample reduced
MCS DAQ Data

Not yet automated

Ladybug
Offline Module

Analysis adapter
for HPC

Command line tool

Other scripts
Docker container

File and 
data set manger

DOOCS
Control System

OPC-UA
EPICS

(TANGO)

Fault Tree
Event display

Failure probability calculation
Not yet implemented

states

Fault State Collector
-Event tree

(global state of all modules
at the moment of first transition

to a fault)
Not yet implemented

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Detailed Results

Figure 2: General overview of the trip event logger and the infrastructure.

the DOOCS internal raw format. It can also start the event
analyses with different options, so that, e.g., a system iden-
tification can be made. In the case considered here, which
is explained in more detail in the next section, this system
identification requires a grey-box identification, but the same
functionality could also be used for example for a neural
network training, if the analysis module is based on some
neural network model. There is also a simple data manager
available, which can package the data sets into small packets.
These can then be used by bash and slurm scripts to submit
jobs to the HPC cluster jobs.

FIRST RESULTS AND CONCLUSION
The first implemented analysis module is a model-based

method based on the parity space [5]. It focuses on
the anomaly detection of superconducting radio-frequency
(SRF) cavities. This is of practical importance as the SRF
cavities as heart of the LLRF system at the European XFEL
are of major importance for a high-performant and reliable
operation. Essentially, the parity space method looks at six
signals for each cavity, being the forward, reflected and probe
signals in amplitude and phase. Based on these signals it can
detect abnormal behavior. We demonstrated that a cavity
can be observed online in this way. Furthermore we verified
that the monitoring can easily be extended to further cavities.
Here, the data transfer rate is the bottleneck that limits the
number of cavities per workstation due to high sampling rate
of 9.027 MHz within a pulse, where the pulse rate is 10 Hz.

With regard to the offline analysis of snap-shot data, the
provided tools leaded to a significant improvement with re-
spect to calculation time. For example, with the described
infrastructure in place, data of two weeks from 32 cavities
was processed within hours on the MAXWELL HPC clus-

ter with standard resources, which previously took about a
month on a local workstation.

In Fig. 2, the parts shown within dashed boxes have not
been implemented yet. This will be subject to future work
on the architecture side. Further analysis modules need to be
developed. This requires substantial expert knowledge from
the areas of accelerators, fault detection but also machine
learning and HPC expertise. However, with this work an
infrastructural basis for such developments could already be
created, which facilitates the development and deployment.

ACKNOWLEDGEMENTS
The authors acknowledge support from DESY (Hamburg,

Germany), a member of the Helmholtz Association HGF.
Special thanks go to Nicholas Walker, DESY, and Mathieu
Omet, KEK, for their inputs.

REFERENCES
[1] R. Isermann, Fault-Diagnosis Systems, Berlin, Germany:

Springer, 2006.

[2] Distributed Object Oriented Control System (DOOCS),
https://doocs-web.desy.de/.

[3] G. Varghese et al., “ChimeraTK - A Software Tool Kit for Con-
trol Applications”, in Proc. 8th Int. Particle Accelerator Conf.
(IPAC’17), Copenhagen, Denmark, May 2017, pp. 1798–1801.
doi:10.18429/JACoW-IPAC2017-TUPIK049

[4] ChimeraTK Repository, https://github.com/ChimeraTK

[5] A. S. Nawaz, S. Pfeiffer, G. Lichtenberg, and P. Rostal-
ski, “Anomaly Detection for Cavity Signals - Results from
the European XFEL”, in Proc. 9th Int. Particle Accelerator
Conf. (IPAC’18), Vancouver, Canada, Apr.-May 2018, pp.
2502–2504. doi:10.18429/JACoW-IPAC2018-WEPMF058

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB293

WEPAB293C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3346

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T27 Low Level RF


