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Abstract
For the two high-luminosity insertions of the Large

Hadron Collider (HL-LHC), current bearing wire correctors
are intended to mitigate the detrimental effect of long-range
beam-beam interactions. Two special locations correspond-
ing to the special values 2 and 1/2 of the beta-function aspect
ratio have been previously shown to provide simultaneous
cancellation of multiple two-dimensional Resonance Driv-
ing Terms. This paper attempts to explain the appearance of
these special aspect ratios.

INTRODUCTION
Two-dimensional amplitude-independent Resonance

Driving Terms (RDT), based on the coefficients 𝑐𝑝𝑞 in the
multipole expansion of the beam-beam kick delivered to
the weak-beam particle have been used in [1] to describe
the effects of long-range beam-beam interactions (l.r.bb ,
or simply bb ) in the HL-LHC, and also optimise the
wire correctors. An analytic formula is presented to
compute the optimum parameters of the wires. The formula
follows from imposing the condition for simultaneous
cancellation of a target pair RDT (indices 𝑝1, 𝑞1, 𝑝2, 𝑞2,
where 𝑝𝑖 ≥ 0) and produces, for two wires located left-right
symmetrically w.r.t. the IP, two equal optimum parameters:
integrated current and distance to the axis. These guarantee
that the target pair RDT, and also the symmetric one
(𝑞1, 𝑝1, 𝑞2, 𝑝2), vanish over a single turn. Further, by
varying the longitudinal location of the wire, it is found
that for some special such locations many, in fact nearly
all, other (residual) driving terms are eliminated, besides
the target pair. These locations correspond to two special
values of the beta-function aspect ratio 𝛽𝑥,𝑦

𝛽𝑦,𝑥
= 1/2 and 2.

It has been long inferred [2] that particular values of the
aspect ratio at the bb collisions, positioned the closest to the
opposite beam, specific to the optics, are responsible for the
occurrence of special locations. This paper, see also [3],
proposes a mathematical formalism (p-norm) to explain the
existence of special ratios. The results confirm the above
conjecture.

WIRE CORRECTION USING RDT
We consider IR5 of the HL-LHC with nominal round-

beam optics, equal emittances 𝜖 in both planes and, for-
mally, 𝜖 = 1, leading to somewhat unusual notations:
𝜎𝑥,𝑦 ≡

√︁
𝛽𝑥,𝑦 , 𝛽𝑥,𝑦 being the weak-beam beta functions;

normalized separations 𝜓𝑥 =
|D𝑥 |
𝜎𝑥

, 𝜓𝑦 =
|D𝑥 |
𝜎𝑦

, where D𝑥 is
the full separation. With these, the (𝑝, 𝑞)-coefficient [1] for
the 𝑛-th bb , or either left (L) or right (R) wire corrector can

be rewritten as

𝑐
(𝑛)
𝑝𝑞 =

𝛽
(𝑛)
𝑥

𝑝

2
𝛽
(𝑛)
𝑦

𝑞

2

|D𝑥
(𝑛) |𝑝+𝑞

= (𝜓 (𝑛)
𝑥 )−𝑝 (𝜓 (𝑛)

𝑦 )−𝑞 , (1)

𝑐w,R
𝑝𝑞 = 𝑁w,R 𝛽

w,𝑅
𝑥

𝑝

2 𝛽
w,𝑅
𝑦

𝑞

2

|D𝑥
w,𝑅 |𝑝+𝑞

and similar for L.

Here 𝑁w,R(L) are proportional to the integrated current of a
wire.

Denote with 𝑁𝑏𝑏 the number of l.r.bb on the right of
IP5 (nominal value 𝑁bb = 18). Further, using the
bb spacing (= half bunch distance), define the bb domain
(𝑛 ∈ bb ) shown on Fig. 1, and in the same way, but with dou-
ble spacing, the bb +wire domain, extending over +201.96 m
from IP5, shown on Fig. 2, top. Using only lattice parameters
on the right of the IP is sufficient, [1], since with the assumed
exact anti-symmetry of the insertion, for fixed 𝑛 these ap-
pear as L-R pairs: 𝜎 (𝑛) ,L

𝑥,𝑦 = 𝜎
(𝑛) ,R
𝑦,𝑥 , D𝑥

(𝑛) ,L = −D𝑥
(𝑛) ,R and

hence 𝜓
(𝑛) ,L
𝑥,𝑦 = 𝜓

(𝑛) ,R
𝑦,𝑥 . The RDT depends on two vectors

of length 𝑁𝑏𝑏 . These can be chosen 𝝍𝐿 and 𝝍𝑅, with com-
ponents 𝜓L = D

𝜎L
𝑥
, 𝜓R = D

𝜎R
𝑥

(D ≡ D𝑥
R > 0). These are

different since outside the drift region 𝜎R
𝑥 ≠ 𝜎L

𝑥 . Preferably,
one of the vectors can be replaced by 𝒓 whose components
are the sigma aspect ratios 𝑟 ≡ 𝜎R

𝑥 /𝜎L
𝑥 = 𝜓L/𝜓R. The two

vectors are shown on Fig. 1, where 𝝍 ≡ 𝝍𝐿 . With all the
above, the RDT becomes

Σ𝑝𝑞 =
∑︁
𝑛∈LR

𝑐
(𝑛)
𝑝𝑞 = 𝝍−𝑝

𝐿
· 𝝍−𝑞

𝑅
+ 𝝍−𝑝

𝑅
· 𝝍−𝑞

𝐿
=

=
∑︁
𝑛∈bb

𝜓
−(𝑝+𝑞)
𝑛 (𝑟 𝑝𝑛 + 𝑟

𝑞
𝑛 ). (2)

æ æ æ æ æ æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

à à à à à à

à

à

à

à à

à

à

à

à

à

à
à

5 10 15

0.6

0.8

1.0

1.2

1.4

8.

9.

10.

11.

12.

13.

n

r n

over 67.32 m from IP5

Ψ
n

à Ψn

æ rn

Figure 1: Values of the sigma aspect-ratio 𝑟𝑛 and normalized
separation 𝜓𝑛 over the bb-domain in IR5 Right.

Similarly, the contribution to the RDT of two wires set at
distance Dw from the axis, and with same effective charge
𝑁w = 𝑁w,L = 𝑁w,R is

Σw
𝑝𝑞 = 𝑁w (𝜓−𝑝

w,L𝜓
−𝑞
w,R + 𝜓

−𝑝
w,R𝜓

−𝑞
w,L). (3)

The cancellation condition is then
Σ𝑝1 ,𝑞1 + Σw

𝑝1 ,𝑞1 = 0, Σ𝑝2 ,𝑞2 + Σw
𝑝2 ,𝑞2 = 0. (4)
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Omitting their derivation, the solutions of (4) are

𝑁w (𝑟) = (𝐴−𝑃2
1 𝐴

𝑃1
2 )

1
𝑃1−𝑃2 , (5)

Dw (𝑟) = 𝜎w,L (𝐴−1
1 𝐴2)

1
𝑃1−𝑃2 . (6)

One needs to know what remains of any other driving
term [1]. The non-corrected (residual) RDT is given by

𝑅𝑝𝑞 (𝑟) = 𝐴
− 𝑃2−𝑃

𝑃1−𝑃2
1 𝐴

𝑃1−𝑃
𝑃1−𝑃2
2 (𝑟 𝑝 + 𝑟𝑞) − Σ𝑝𝑞 . (7)

Here 𝑃 = 𝑝 + 𝑞, 𝑃1 = 𝑝1 + 𝑞1, 𝑃2 = 𝑝2 + 𝑞2, where 𝑃1 ≠ 𝑃2
and 𝑟 is a continuous variable defined within the wire domain.
The formulae (5) and (6) are the same as in [1]. Eq. (7) was
first presented in [3]. Importantly, all three expressions Eqs.
(5), (6) and (7) depend on a single function of 𝑟:

𝐴𝑝𝑞 (𝑟) ≡
Σ𝑝𝑞

(𝑟 𝑝 + 𝑟𝑞) =
∑︁
𝑛∈bb

𝜓
−(𝑝+𝑞)
𝑛

𝑟
𝑝
𝑛 + 𝑟

𝑞
𝑛

𝑟 𝑝 + 𝑟𝑞
(=

∑︁
𝑛∈bb

𝑉𝑃
𝑛 ).

(8)
with the notations 𝐴 ≡ 𝐴𝑝𝑞 , 𝐴1 ≡ 𝐴𝑝1𝑞1 , 𝐴2 ≡ 𝐴𝑝2𝑞2 . The
meaning of vector 𝑽 = (𝑉1, . . . , 𝑉𝑛) is to be clarified later.

Notice that, by definition of a residual term, 𝑅𝑝1𝑞1 =

𝑅𝑝2𝑞2 = 0. E.g., take 𝑝 = 𝑝1 and 𝑞 = 𝑞1; then since 𝑃 = 𝑃1,

𝑅𝑝1𝑞1 = 𝐴
− 𝑃2−𝑃1

𝑃1−𝑃2
1 (𝑟 𝑝1 + 𝑟𝑞1 ) − Σ𝑝1𝑞1 = Σ𝑝1𝑞1 − Σ𝑝1𝑞1 = 0.

For illustration, Fig. 2, using three sample target pairs results
in plots identical to the ones in [1].

Figure 2: Top: Values of the aspect-ratio 𝑟𝑛 and normalized
separation 𝜓𝑛 over IR5 Right. The distance from IP5 is here
𝑆[𝑚] = 7.48 × 𝑛 (a double bb-spacing is used). Middle:
Solutions of Eqs. (5) and (6) shown over the wire domain
only. Bottom: Relative residual driving term 𝑅𝑝𝑞 (𝑟)/Σ𝑝𝑞

Eq. (7) as a function of 𝑟2 over the wire domain.

Let us recall the meaning of Eqs. (5), (6), and (7). Look-
ing at Fig. 2, take the first target pair (𝑝1, 𝑞1, 𝑝2, 𝑞2) =

(4, 0, 6, 0). Combined with any residual pair (𝑝, 𝑞) from
the bottom plot, it forms a group referred to below as a
“triad’ of RDT": Σ𝑝𝑞 , Σ𝑝1𝑞1 and Σ𝑝2𝑞2 . If two wires with
parameters 𝑁w (𝑟w) and Dw (𝑟w) are installed at symmetric
locations at which the aspect ratio is 𝑟 = 𝑟w (and 1/𝑟w),
then Σ𝑝1𝑞1 , Σ𝑝2𝑞2 are cancelledat these locations, while the
dependence of the residual Σ𝑝𝑞 on 𝑟 is given by (7). It is
further clear that some special locations provide solutions
for both multiple target pairs and residual terms (bottom),
say 𝑛 = 12, where 𝑟 ∼

√
2 (top, left), The questions are: 1)

why this may be true for every such triad; and 2) is this re-
lated to the extreme, i.e. minimum and maximum values of
𝑟𝑛 being 0.48 ∼ 1/2 and 1.56 ∼ 3/2 within the bb domain.

EQUATION FOR THE SPECIAL RATIOS
Special aspect ratios 𝑟, for which the residual term may

also (besides the target pair) be canceled, satisfy 𝑅𝑝𝑞 (𝑟) = 0,
hence from (7) and (8), these are roots of the equation

𝐴1 (𝑟)−
𝑃2−𝑃
𝑃1−𝑃2 𝐴2 (𝑟)

𝑃1−𝑃
𝑃1−𝑃2 = 𝐴(𝑟). (9)

Notice the identity −𝑃1
𝑃2−𝑃
𝑃1−𝑃2

+ 𝑃2
𝑃1−𝑃
𝑃1−𝑃2

= 𝑃. By using it,
it can be shown that 1) if 𝑟 is a solution, then 1/𝑟 is also a
solution; 2) for a single bb collision occurring at a flatness
𝑟𝑛, the solution is 𝑟 = 𝑟𝑛 and inverted (same flatness at wire
as at the bb).

Assume that there exist 𝑟 such that Eq. (9) is fulfilled for
any triad. Since this Eq. (9) depends only on 𝐴(𝑟), this func-
tion must have some special property. To find it, introduce,
besides 𝑃 = 𝑝 + 𝑞, the difference 𝑀 = 𝑝 − 𝑞 (a measure of
coupling). Here 𝑃 ≥ 𝑀 . We are now looking for 𝑟 such that
Eq. (9) is fulfilled for arbitrary both 𝑃 and 𝑀 .

Notice that (9) will be true for any 𝑃, if 𝐴 is of the form
𝐴 = 𝑆 𝑃 (and 𝐴1 = 𝑆𝑃1 , 𝐴2 = 𝑆𝑃2 ). This again follows from
the above identity. In such case, vector V satisfies:∑︁
𝑛∈bb

𝑉𝑃
𝑛 = 𝑆𝑃; 𝑉𝑛 ≡ 𝜓−1

𝑛

(
𝑟
(𝑃+𝑀 )/2
𝑛 + 𝑟

(𝑃−𝑀 )/2
𝑛

𝑟 (𝑃+𝑀 )/2 + 𝑟 (𝑃−𝑀 )/2

)1/𝑃

,(10)

since 𝑝 = 1
2 (𝑃 + 𝑀) and 𝑞 = 1

2 (𝑃 − 𝑀). Thus the above 𝑆

turns out to be the p-norm [4] of the vector 𝑽:

𝑆 =

( ∑︁
𝑛∈bb

𝑉𝑃
𝑛

)1/𝑃

. (11)

Next, since 𝑀 must also be arbitrary, 𝑆 should not depend
on 𝑀. Require that the derivative of 𝑆 over 𝑀 is zero
𝜕

𝜕𝑀

(∑
𝑛∈bb 𝑉𝑃

𝑛

)1/𝑃
= 0. Using the chain rule:

𝜕𝑆

𝜕𝑀
=

1
𝑃 𝑆1− 1

𝑃

∑︁
𝑛∈bb

𝑑

𝑑𝑀
𝑉𝑃
𝑛 =

1
𝑆1− 1

𝑃

∑︁
𝑛∈bb

𝑉𝑃−1
𝑛

𝑑𝑉𝑛

𝑑𝑀
= 0.

When 𝑀 < 𝑃 (𝑝, 𝑞 are positive integers), then 𝑉 𝑃−1
𝑛 is

almost independent of 𝑛 and can be taken outside the sum:∑︁
𝑛∈bb

𝑑𝑉𝑛

𝑑𝑀
= 0. (12)

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB279

WEPAB279C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3298

MC5: Beam Dynamics and EM Fields

D10 Beam-Beam Effects - Theory, Simulations, Measurements, Code Developments



The signs of 𝑑𝑉𝑛

𝑑𝑀
are important as for some 𝑛 they may

cancel, Fig. 3. By substituting here the derivatives of 𝑉𝑛:

∑︁
𝑛∈bb

1
2𝑃𝜓𝑛

©­« (𝑟
− 1

2 (𝑀+𝑃)
𝑛 𝑟

1
2 (𝑀−𝑃) (𝑟𝑀𝑛 + 1)

𝑟𝑀 + 1
ª®¬

1
𝑃

×(
−𝑟

𝑀
𝑛 − 1
𝑟𝑀𝑛 + 1

log 𝑟𝑛 +
𝑟𝑀 − 1
𝑟𝑀 + 1

log 𝑟
)
= 0. (13)

In the limit 𝑃 → ∞, Eq. (13) becomes:∑︁
𝑛∈bb

𝜓−1
𝑛

(
𝑟𝑀𝑛 − 1
𝑟𝑀𝑛 + 1

√
𝑟𝑛 log 𝑟𝑛 − 𝑟𝑀 − 1

𝑟𝑀 + 1
√
𝑟 log 𝑟

)
= 0. (14)

The only two roots are easily found numerically. Assume
for a moment that 𝑃 and 𝑀 are arbitrary and > 0. Fig. 4 left,
shows that the roots reach the large-P limit at 𝑃 ≈ 𝑀. For
𝑃 > 𝑀, both roots are independent of 𝑃, but their value at
saturation value exhibits, for large 𝑀 , a small shift or spread,
which is larger for the upper root (near

√
2). This agrees

with what is seen on the bottom plot of Fig. 2.

Weight Function
At least for the optics considered, the special roots are

nearly independent of 𝜓𝑛 and by further ignoring the square
root (≈ 1), the large-P limit Eq. (14) can be replaced by

Figure 3: Plotted are the 18 terms in Eq. (12) versus 𝑟 and
their average: sum/18 (black dashed curve). This curve
is seen to be at zero near 𝑟 ≈ 1/

√
2 and

√
2, which fact is

marked with black dots. Left: Eq. (13), Right: Eq. (15).
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Figure 4: Solutions of the exact Eq. (13) (left) and the
approximate Eq. (15) (right). Only the range 𝑃 ≥ 𝑀 is
meaningful.

∑︁
𝑟𝑛≠1

𝐹𝑀 (𝑟𝑛) = 𝑁𝑏𝑏𝐹𝑀 (𝑟), with 𝐹𝑀 (𝑟) ≡ 𝑟𝑀 − 1
𝑟𝑀 + 1

log 𝑟. (15)

Here still 𝑁𝑏𝑏 = 18, but since 𝐹𝑀 (1) = 0, the sum is is in
fact only over the “flat” collisions. 𝐹𝑀 has the meaning of a
weight function: 𝑟 is such that the value of 𝐹𝑀 at 𝑟 equals
the average contributions of all collisions taken with weights
𝐹𝑀 (𝑟𝑛). It shows how much the flatness at the beam-beam
collision contributes to the root. It depends on the coupling
parameter 𝑀 .

Subsets of Long-Range Collisions
A fundamental property of the p-norm is that for large 𝑃

it can be replaced by the maximum (modulo) of its elements:
lim

𝑃 → ∞
𝑆 = max

1 ≤ 𝑛 ≤ 18
|𝑉𝑛 |, (16)

This suggests that the sum Eq. (12) may be well represented
by appropriate subsets of 𝑛. These would produce the same
roots as all the 18. An indication is that on Fig. 3 there are
three well separated groups of curves: top, mostly corre-
sponding to 𝑟𝑛 ∼ 1/2, middle – 𝑟𝑛 ∼ 3/2, and bottom –
the overlapping red ones for 𝑟𝑛 ≈ 1. Such subsets indeed
work and they turn out to be a mix of several round-beam l.r.
bb with l.r. positioned near its extremes over the bb domain:
𝑟𝑛 ≈ 1/2 or 𝑟𝑛 ≈ 3/2 (see Fig. 1). The condition found is
"two round l.r. per flat one" – Fig. 5.
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Figure 5: Sample subset containing four round (𝑟𝑛 = 1) and
two flat (𝑟𝑛 ≠ 1) l.r.bb collisions with 𝑟𝑛 ≈ 1/2 and 3/2.

CONCLUSIONS
The findings in [1]: the two locations at which multi-

ple driving terms are cancelled correspond to the magic
values∼

√
2 (and inverted) of the sigma aspect parameter 𝑟

are confirmed and explained with properties of the p-norm.
It is further found that: 1) depending on how far 𝑟 is from
the magic value, low- and high-order terms are canceled to a
slightly different degree because of the spread occurring for
large 𝑝 − 𝑞 (weaker coupling), Fig. 4. Namely, higher order
terms are better cancelled a little below

√
2 and a little above

1/
√

2. The spread is larger for the location with 𝑟 ∼
√

2 (beta
aspect ratio ∼ 2), as also observed in [1]. The other location,
near Q5, is therefore preferable. 3) For the optics considered,
the magic values can be explained with the min/max values
of 𝑟 in the beam-beam region being ≈

√
2 and ≈ 3

√
2.
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