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Abstract

High-current low-emittance continuous wave (CW) elec-
tron beams are indispensable for nuclear and high-energy
physics fixed target and collider experiments, cooling high
energy hadron beams, generating CW beams of monoen-
ergetic X-rays (in FELs) and gamma-rays (in Compton
sources). Polarization of electrons in these beams provides
extra value by opening a new set of observables and fre-
quently improving the data quality. We report on the up-
grade of the unique and fully functional CW SRF 1.25 MeV
gun, built as part of the Coherent electron Cooling (CeC)
project, which has demonstrated sustained CW operation
with CsK,Sb photocathodes generating electron bunches
with record-low transverse emittances and record-high bunch
charge exceeding 10 nC. We will extend the capabilities of
this system to high average current of 100 milliampere in
two steps: increasing the current 30-fold at each step with
the goal to demonstrate reliable long-term operation of the
high-current low-emittance CW SRF guns. We also will
test polarized GaAs photocathodes in the ultra-high vacuum
(UHV) environment of the SRF gun, which has never been
successfully demonstrated in RF accelerators.

INTRODUCTION

High-current low-emittance CW electron beams are of
great importance for existing and future scientific facilities,
medical, industrial and homeland security applications, and
beyond. Such beams are indispensable for nuclear and high-
energy physics fixed target and collider experiments, cool-
ing high energy hadron beams, generating CW beams of
monoenergetic X-rays (in FELs) and y-rays (in Compton
sources), high-power EUV beams for manufacturing the
next generation of microchips, border cargo inspection, to
mention just a few. Polarization of electrons in these beams
provides extra value by opening a new set of observables
and frequently improving the data quality by boosting signal
to background ratio.

The CW super-conducting radiofrequency (SRF) electron
gun is one of the most advanced, but also one of the most
challenging, technologies promising to deliver such beams
[1-6]. While SRF technology is paving the way for the future
accelerators, the compatibility of advanced SRF technology
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with complex photocathodes remains on the forefront of the
modern accelerator science, and many important questions
remain unanswered [7, 8].

We are aiming to upgrade the unique and fully functional
CW SREF facility installed at the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven National Laboratory (BNL) by
adding high-current and polarized beam capabilities. Our
1.25 MeV SRF gun, built as part of the Coherent electron
Cooling (CeC) project [9, 10], has demonstrated sustained
CW operation with CsK,Sb photocathodes generating elec-
tron bunches with record-low transverse emittances and
record-high bunch charge exceeding 10 nC [11, 12]. The
cathodes survive many months of continuous operation. Nev-
ertheless, the average beam current, determined by the needs
of the CeC project, is limited to about 100 pA. Our goal is
to extend the capabilities of this system to high average cur-
rent of 100 milliampere in two steps: increasing the current
30-fold at each step. We also will test polarized GaAs photo-
cathodes in the ultra-high vacuum (UHV) environment of the
SRF gun—which has never been successfully demonstrated
in RF accelerators. The upgrades include the cathode prepa-
ration and UHV cathode transfer system, and a polarimeter
to measure polarization of the generated electron beam. Fi-
nally, we propose to optimize in-situ processing, including
both He treatment and plasma processing, for restoring and
improving performance of our gun’s quarter-wave SRF cav-

ity.

CURRENT STATUS
OF THE BNL SRF GUN

At the beginning of the CeC run 2021, the gun showed
poor performance and rapid decay of the cathode quantum
efficiency. After a thorough investigation, it was found that
the cathode end effector was severely damaged while being
inserted into the cavity. This damage introduced signifi-
cant particulate contamination into the gun, which required
immediate cavity conditioning.

A combination of CW RF processing, High-power Pulsed
Processing (HPP) and Helium processing was used with an
ultimate goal to achieve 1.35 MV which is a satisfactory op-
erational voltage required for the Coherent electron Cooling
experiment (1.25 MV operational voltage with a headroom
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Figure 1: Maximal achieved cavity voltage in CW (a) and

pulsed (b) modes after the gun conditioning.
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of 0.1 MV). As a result of the cavity conditioning, the gun
achieved 1.5 MV in CW and 1.7 MV in pulsed mode, which
has never been demonstrated in this cavity. Figure 1 shows
the cavity voltage from the pickup in pulsed and CW modes
of operation.

Energy measurement using dark current in CW mode
confirmed the achieved 1.5 MV cavity voltage (see Fig. 2 for
the result of the energy measurement using a downstream
solenoid and a beam profile monitor).

With a new cathode installed into the gun after condition-
ing, we were able to demonstrate a new record charge ever
extracted from an SRF gun: 19.7 nC with a 500 ps bunch.

SYSTEM UPGRADES

Generating higher current from the SRF gun requires the
following components to be implemented: a high repetition
rate laser, high quantum efficiency (QE) photocathodes, a
low loss beam transport to the high-power beam dump, and
an RF system supplying power to the beam.

100 kW Fundamental Power Coupler

The current configuration of the fundamental power cou-
pler (FPC) delivers power to the cavity from a 4 kW solid
state amplifier, and also serves as a frequency tuner [13].
The coupler for the proposed system upgrade should provide
100 kW power in CW regime, and must be interchangeable
with the existing coupler configuration. A conceptual design
of the coupler antenna is currently under development (see
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Figure 2: Energy measurement using dark current shows the
achieved voltage of 1.5 MV CW.

Fig. 3 for preliminary desing of the windows and antenna
configuration). The antenna provides the required coupling
and frequency tuning range of 7 kHz with an expected mov-
ing range of the antenna of ~15 mm. The coupling value
changes not more than 2 times in the required tuning range.
Preliminary multipacting simulations have shown that mul-
tipacting exists in the regular part of the coupler. The power
range for multipactor to occur is from 50 W to 20 kW. A
high voltage bias is suggested to suppress multipactor, and a
configuration which allows application of the high voltage
bias is proposed. The expected power losses in the coupler
are not high, air can be used as the cooling media. Two cou-
pler windows will be used to increase reliability. Mechanical
simulations showed that (i) stresses in the ceramic rings (and
alumina gaskets) are at ~100 MPa, which is an acceptable
level; (ii) a gravity antenna offset is ~0.05 mm.

11, two window configuration.
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Figure 3: An example of the antenna configuration utilizing
two windows with 50 kW CW per window.

CeC Laser Upgrade

The current CeC Master Oscillator Power Amplifier
(MOPA) laser system will require an upgrade in order to
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support high-current gun operation. The system upgrade is
ongoing and includes a possibility to provide a variety of flat
pulse lengths, the regenerative amplifier will have a variable
repetition rate Pockels Cell driver with up to 5 MHz. The
summary of the expected performance parameters is shown
in Table 1.

Table 1: Summary of the Expected CeC Laser Performance
Parameters

Parameter Unit Min Typ. Max
Seed Wavelength nm 1064.2

Output Wave- nm 532.1

length

Bandwidth nm 0.05

Pulse Duration ps 50 350 750
Pulse Shape - Flat-Top
Repetition Rate kHz 10 78 5000
Average Power @ W 6

532 nm

Pulse Energy pJ 1 75 500
Charge equivalent nC 2 150 1000

after spatial shap-
ing (1% QE)

Compton Transmission Polarimeter

A Compton Transmission Polarimeter, which will be used
to measure beam polarization when the SRF photogun em-
ploys a GaAs photocathode, is currently under development.
The schematic of the current design of the polarimeter is
shown in Fig. 4.
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Figure 4: Schematic of the Compton polarimeter.

CONCLUSION

The efforts to upgrade the novel BNL SRF gun to demon-
strate high-current performance, generation of polarized
electron beams, and explore the modern cavity restoration
techniques are currently under way. The system upgrades
include the design of a 100 kW FPC, improved laser system,
and design of a new Compton transmission polarimeter. We
have tested a novel method of improving performance of an
SRF gun (with respect to the dark current and X-ray radia-
tion) with and without use of He gas. It was successful and
reduced radiation and dark current 2.5-fold. The SRF gun
achieved record high voltages in both CW and pulsed oper-
ation after the He conditioning. The gun delivered 500 ps,
19.7 nC bunches.
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