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Abstract 
By incorporating the longitudinal electric field reduction 

due to finite transverse beam size into the Poisson equation 
and solving the Hill's equation with time-dependent plasma 
frequency, we investigate how the amplification of a 
Plasma-Cascade Amplifier (PCA) depends on the spatial 
frequency of the density modulation.  

INTRODUCTION 
E A new type of amplifier, plasma cascade amplifier 

(PCA) has been proposed for a coherent electron cooling 
(CeC) system [1-3]. Previously, the 1D model for PCA as-
sumes that the transverse distribution of the density pertur-
bation in the electrons is uniform and consequently, the 
plasma frequency does not depend on the wavelength of 
the perturbation [1]. This assumption is valid if the longi-
tudinal wavelength of the initial perturbation in the beam 
frame is much shorter than the transverse width of pertur-
bation.  

In this work, we explore the PCI gain at long wavelength 
by assuming the perturbation in electrons’ density has non-
uniform transverse profile. Specifically, we solve the 3D 
Poisson equation for given charge distribution (longitudi-
nal sinusoidal, transversely Gaussian or Beer-can), average 
the electric field over the transverse plane and then apply 
it to 1-D Vlasov equation. Similar to the previous calcula-
tion in [1], the Vlasov equation can be reduced to a Hill’s 
equation but the plasma frequency now depends on the lon-
gitudinal wavelength of the density perturbation in the 
electrons. By numerically solving the Hill’s equation, we 
obtain the gain of a PCA as a function of spatial frequency, 𝑘௭. 

EQUATION OF MOTION 
For 1-D analysis, we treat each electron as a charge disc 

with certain charge distribution and consequently the evo-
lution of the electrons' density perturbation in the beam 
frame are determined by the linearized 1-D Vlasov equa-
tion,  డడ௧ 𝑓ଵሺ𝑧, 𝑣௭, 𝑡ሻ + 𝑣௭ డడ௭ 𝑓ଵሺ𝑧, 𝑣௭, 𝑡ሻ + 𝑣ሶ௭ డడ௩೥ 𝑓଴ሺ𝑧, 𝑣௭, 𝑡ሻ = 0, 

(1) 
where 𝑣௭ is the longitudinal velocity of the electrons, 𝑧 

is the longitudinal position along the bunch, 𝑣ሶ௭ = −௘ா೥ሺ௭,௧ሻ௠೐ ,                              (2) 

is the longitudinal acceleration due to the longitudinal elec-
tric field 𝐸௭ሺ𝑧, 𝑡ሻ , 𝑒 is the absolute value of the charge of 
an electron and 𝑓ଵሺ𝑧, 𝑣௭, 𝑡ሻ is the density perturbation of the 
electrons in the longitudinal phase space and 𝑓଴ሺ𝑣௭ሻ is the 
unperturbed distribution of electrons. The longitudinal 
electric field due to density perturbation is determined by 
the Poisson equation 

  𝛻 ⋅ 𝐸ሬ⃗ = −௘௡ሺ௥,௭,ఏ,௧ሻఌబ ,  (3) 
where 𝑛ሺ𝑟, 𝑧,𝜃, 𝑡ሻ is the local spatial density perturbation 
of the electrons. For the next step, we will try to solve 
Eq. (3) and since there is no operation in time 𝑡 for Poisson 
equation, we will omit 𝑡 from the variables in the bracket 
for now and will put it back when we solve the coupled-
Poisson-Vlasov equation system. If we assume that the 
spatial distribution of the electron beam has cylindrical 
symmetry and define  

  𝑛ሺ𝑟, 𝑧ሻ = 𝜌ଵሺ𝑧ሻ𝑓 ሺ𝑟ሻ,                     (4) 
Eq. (3) becomes ଵ௥ ቂ డడ௥ ൬𝑟 డడ௥ 𝜑ሺ𝑟, 𝑧ሻ൰ቃ + డమడ௭మ 𝜑ሺ𝑟, 𝑧ሻ =− ௘ఌబ 𝜌ଵሺ𝑧ሻ𝑓 ሺ𝑟ሻ,  (5) 

where 𝜑ሺ𝑟, 𝑧ሻ is the electric potential, 𝑓 ሺ𝑟ሻ is the trans-
verse surface density of electrons in unit of 𝑚ିଶ and 𝜌ଵሺ𝑧ሻ 
is perturbation of electron line density in unit of 𝑚ିଶ. Mul-
tiplying both sides of Eq. (5) by 𝑒ି௜௞௭ and integrating over 𝑧 yields డమడ௥మ 𝜙 + ଵ௥ డడ௥ 𝜙 − 𝑘ଶ𝜙 = 𝑓ሺ𝑟ሻ,  (6) 

with   𝜙ሺ𝑘, 𝑟ሻ = ׬ 𝑒ି௜௞௭𝜑ሺ𝑟, 𝑧ሻ𝑑𝑘∞ି∞ ,  (7) 𝑓ሺ𝑟ሻ = − ௘ఌబ 𝑓 ሺ𝑟ሻ ׬ 𝑒ି௜௞௭𝜌ଵሺ𝑧ሻ𝑑𝑧∞ି∞ = − ௘ఌబ 𝑓 ሺ𝑟ሻ𝜌෤ଵሺ𝑘ሻ, 
  (8) 

 and   𝜌෤ଵሺ𝑘ሻ = ׬ 𝑒ି௜௞௭𝜌ଵሺ𝑧ሻ𝑑𝑧∞ି∞ .  (9) 
The solution of Eq. (6) can be written as 𝜙ሺ𝑟ሻ = 𝑐ଵ𝐼଴ሺ𝑘𝑟ሻ + 𝑐ଶ𝐾଴ሺ𝑘𝑟ሻ + ଵ௞ ׬ ூబሺ௞కሻ௄బሺ௞௥ሻି௄బሺ௞కሻூబሺ௞௥ሻூబሺ௞కሻ௄బ′ሺ௞కሻି௄బሺ௞కሻூబ′ሺ௞కሻ ⋅௥௥బ 𝑓ሺ𝜉ሻ𝑑𝜉,  (10) 

where 𝐼଴ሺ𝑥ሻ and 𝐾଴ሺ𝑥ሻ are the modified Bessel functions. 
By applying the following boundary conditions, 𝜙ሺ∞ሻ = 0 and 𝑙𝑖𝑚௥→଴𝜙ሺ𝑟ሻ ≠ ∞, the coefficient, 𝑐ଵ and 𝑐ଶ 
can be determined as 

   𝑐ଵ = 0,   (11) 
and 

   𝑐ଶ = ׬− 𝜉𝐼଴ሺ𝑘𝜉ሻ ⋅∞଴ 𝑓ሺ𝜉ሻ𝑑𝜉.  (12) 

Inserting Eq. (11) and Eq. (12) into Eq. 10 leads to 
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  𝜙ሺ𝑟ሻ = 𝐼଴ሺ𝑘𝑟ሻ ׬ 𝜉𝐾଴ሺ𝑘𝜉ሻ ⋅௥
∞ 𝑓ሺ𝜉ሻ𝑑𝜉  − 𝐾଴ሺ𝑘𝑟ሻ ׬ 𝜉𝐼଴ሺ𝑘𝜉ሻ ⋅௥଴ 𝑓ሺ𝜉ሻ𝑑𝜉.  (13) 

The longitudinal electric field is obtained from 𝐸௭ = −డఝడ௭ = − ௜ଶగ ׬ 𝑘𝜙ሺ𝑘, 𝑟ሻ𝑒௜௞௭𝑑𝑘∞ି∞ = ଵଶగ ׬ 𝐸෨௭ሺ𝑟, 𝑘ሻ𝑒௜௞௭𝑑𝑘∞ି∞ , 
with 𝐸෨௭ሺ𝑟, 𝑘ሻ = −𝑖𝑘𝜙ሺ𝑟ሻ.    (14) 

If we assume that the transverse distribution of the elec-
tron density perturbation is Gaussian, i.e. 𝑓ሺ𝑟ሻ = − ௘ఌబ 𝜌෤ଵሺ𝑘ሻ ଵଶగఙೝమ 𝑒𝑥𝑝 ቀ− ௥మଶఙೝమቁ,  (15) 
the longitudinal electric field averaged over the transverse 
plane reads 𝐸௭,௔௩௚ሺ𝑧ሻ = ଵଶగ ׬ 𝐸෨௭,௔௩௚ሺ𝑘ሻ𝑒௜௞௭𝑑𝑘∞ି∞ ,  (16) 
with 𝐸෨௭,௔௩௚ = 2𝜋 ׬ 𝑟𝑓 ሺ𝑟ሻ𝐸෨௭∞଴ ሺ𝑟ሻ𝑑𝑟 = − ௜௘ఘ෥భሺ௞ሻସగఌబ௞ఙೝమ ⋅ 𝑅ሺ𝑘𝜎௥ሻ,

 (17) 
and 𝑅ሺ𝑘𝜎௥ሻ ≡ 4𝑘ଶ𝜎௥ଶ ׬ 𝑑𝜁∞଴ ׬ 𝑑𝜂 ⋅ 𝜁𝜂𝐼଴ሺ𝑘𝜎௥𝜂ሻ𝐾଴ሺ𝑘𝜎௥𝜁ሻ𝑒ആమశഅమమ఍଴  . 

(18) 
There are other forms of 𝑅ሺ𝑘𝜎௥ሻ such as 𝑅ሺ𝑘𝜎௥ሻ = 𝑘ଶ𝜎௥ଶ𝑒௞మఙೝమ𝐸𝑖ሺ𝑘ଶ𝜎௥ଶሻ,  (19) 
and 𝑅ሺ𝑘𝜎௥ሻ = 2𝑘𝜎௥ ׬ 𝛷ሺ𝑥ሻ 𝑠𝑖𝑛ሺ𝑘𝜎௥𝑥ሻ 𝑑𝑥∞଴ ,  (20) 
with 𝛷ሺ𝑥ሻ = ଵଶ ቂ ௫|௫| − ௫√గଶ 𝑒𝑥𝑝 ቀ௫మସ ቁ 𝑒𝑟𝑓𝑐 ቀ|௫|ଶ ቁቃ,  (21) 
and numerical evaluation verifies that they are equiva-

lent to Eq. (18). 
For uniform transverse charge distribution, instead of 

Eq. (15), we take 𝑓ሺ𝑟ሻ = − ௘ఌబ 𝜌෤ଵሺ𝑘ሻ ଵగ௔మ 𝐻ሺ𝑎 − 𝑟ሻ,  (22) 
where 𝐻ሺ𝑥ሻ  is the Heaviside step function, 𝑎 is the beam 
radius and the normalization of 𝑓ሺ𝑟ሻ is 2𝜋 ׬ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟∞଴ = − ௘ఌబ 𝜌෤ଵሺ𝑘ሻ.  (23) 
Inserting Eq. (22) into Eq. (14) yields 𝐸෨௭ሺ𝑟ሻ = 𝑖𝑘 ௘గఌబ 𝜌෤ଵሺ𝑘ሻ × ቂ𝐼଴ሺ𝑘𝑟ሻ ׬ 𝜂𝐾଴ሺ𝑘𝑎 ⋅ 𝜂ሻଵ௥/௔ 𝑑𝜂 + 𝐾଴ሺ𝑘𝑟ሻ ׬ 𝜂𝐼଴ሺ𝑘𝑎 ⋅௥/௔଴𝜂ሻ 𝑑𝜂ቃ. (24) 
Averaging Eq. (24) over the transverse plane leads to 𝐸෨௭,௔௩௚ = ଶగగ௔మ ׬ 𝑟𝑑𝑟𝐸෨௭௔଴ ሺ𝑟ሻ = 𝑖 ௘గఌబ௞௔మ 𝜌෤ଵሺ𝑘ሻ𝑅ሺ𝑘𝑎ሻ, (25) 
with 𝑅ሺ𝑘𝑎ሻ ≡ ସሺ௞௔ሻమ ׬ 𝐼ଵሺ𝜏ሻ𝐾଴ሺ𝜏ሻ𝜏ଶ𝑑𝜏௞௔଴ .  (26) 
Figure 1 shows that for the same RMS beams size of 

0.1 mm, the field reduction for the uniformly distributed 
beam is more significant than that for the electrons with 
Gaussian transverse spatial distribution. 

Figure 1: Reduction factor as calculated from Eq. (18) for 
the Gaussian transverse distributed electrons with RMS 
beam width of 0.1 mm and that calculated by Eq. (26) with 
beam radius of 0.2 mm. 

Multiplying both sides of Eq. (1) by 𝑒𝑥𝑝ሺ−𝑖𝑘𝑧ሻ and in-
tegrating over z yields డడ௧ 𝑓ሚଵሺ𝑘, 𝑣௭, 𝑡ሻ + 𝑖𝑘𝑣௭𝑓ሚଵሺ𝑘, 𝑣௭, 𝑡ሻ −௘௠೐ 𝐸෨௭ሺ𝑘, 𝑡ሻ డడ௩೥ 𝑓଴ሺ𝑣௭ሻ = 0,  (27) 

with 𝑓ሚଵሺ𝑘, 𝑣௭, 𝑡ሻ ≡ ׬ 𝑒ି௜௞௭𝑓ଵሺ𝑧, 𝑣௭, 𝑡ሻ𝑑𝑧ஶିஶ . Multiplying 
both sides of Eq. (28) by 𝑒𝑥𝑝ሺ𝑖𝑘𝑣௭𝑡ሻ  leads to  డడ௧ ൣ𝑒௜௞௩೥௧𝑓ሚଵሺ𝑘, 𝑣௭, 𝑡ሻ൧ = ௘௠೐ 𝐸෨௭ሺ𝑘, 𝑡ሻ𝑒௜௞௩೥௧ డడ௩೥ 𝑓଴ሺ𝑣௭ሻ.  

 (28) 

Integrating Eq. (29) over time, t, leads to 𝑓ሚଵሺ𝑘, 𝑣௭, 𝑡ሻ = 𝑒ି௜௞௩೥௧𝑓ሚଵሺ𝑘, 𝑣௭, 0ሻ+ ௘௠೐ డడ௩೥ 𝑓଴ሺ𝑣௭ሻ ׬ 𝐸෨௭ሺ𝑘, 𝑡ଵሻ𝑒ି௜௞௩೥ሺ௧ି௧భሻ𝑑𝑡ଵ௧଴ . 
(29) 

Replacing 𝐸෨௭ሺ𝑘, 𝑡ଵሻ with the averaged field for uniform 
distribution, Eq. (25), yields 
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 (30) 
with 𝑆∗ሺ𝑘, 𝑡ሻ ≡ గ௔మோሺ௞௔ሻ.   (31) 
Integrating Eq. (30) over 𝑣௭ gives 𝜌෤ଵሺ𝑘, 𝑡ሻ = න 𝑒ି௜௞௩೥௧𝑓ሚଵሺ𝑘, 𝑣௭, 0ሻ𝑑𝑣௭ஶ

ିஶ− ௘మఌబ௠೐ ׬ 𝑑𝑡ଵሺ𝑡 − 𝑡ଵሻ ఘ෥భሺ௞,௧భሻௌ∗ሺ௧భሻ ൛׬ 𝑓଴ሺ𝑣௭ሻ𝑒ି௜௞௩೥ሺ௧ି௧భሻ𝑑𝑣௭ஶିஶ ൟ௧଴ , 
 (32) 

where we used the following relation 
  𝜌෤ଵሺ𝑘, 𝑡ሻ = ׬ 𝑓ሚଵሺ𝑘, 𝑣௭, 𝑡ሻ𝑑𝑣௭ஶିஶ . (33) 

Assuming the unperturbed electron line density is 𝜌଴ and 
taking the following unperturbed velocity distribution, 

  𝑓଴ሺ𝑣௭ሻ = ఘబఙೡగ ଵఙೡమା௩೥మ, (34) 
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Eq. (32) becomes 
    𝜌෤ଵሺ𝑘, 𝑡ሻ = ׬ 𝑒ି௜௞௩೥௧𝑓ሚଵሺ𝑘, 𝑣௭, 0ሻ𝑑𝑣௭ஶିஶ− ௘మఘబఌబ௠೐ ׬ 𝑑𝑡ଵሺ𝑡 − 𝑡ଵሻ ఘ෥భሺ௞,௧భሻௌ∗ሺ௧భሻ 𝑒𝑥𝑝ሾ−|𝑘|𝜎௩ሺ𝑡 − 𝑡ଵሻሿ௧଴ .      (35) 
Taking second time derivative of Eq. (36) yields ௗమௗ௧మ 𝑅෨ଵሺ𝑘, 𝑡ሻ + ௘మఘబఌబ௠೐ௌ∗ሺ௧ሻ 𝑅෨ଵሺ𝑘, 𝑡ሻ = − ௘మఘబఌబ௠೐ௌ∗ሺ௧ሻ ׬ 𝑒ି௜௞௩೥௧ 𝑒|௞|ఙೡ௧ 𝑓෫ ଵ ሺ𝑘, 𝑣௭, 0ሻ𝑑𝑣௭ஶିஶ ,            (36) 

where 𝑅෨ଵሺ𝑘, 𝑡ሻ ≡𝜌෤ଵሺ𝑘, 𝑡ሻ 𝑒|௞|ఙೡ௧ ׬− 𝑒ି௜௞௩೥௧ 𝑒|௞|ఙೡ௧ 𝑓෫ ଵ ሺ𝑘, 𝑣௭, 0ሻ𝑑𝑣௭ஶିஶ .  (37) 
If we further assuming the initial perturbation has the 

following form 𝑓ଵሺ𝑧, 𝑣௭, 0ሻ = ఘభሺ௭,଴ሻఙ೥గ ଵఙ೥మା௩೥మ,    (38) 
Eq. (37)becomes ௗమௗ௧మ 𝑄෨ଵሺ𝑘, 𝑡ሻ + ௘మఘబோሺ௞,௧ሻఌబ௠೐ௌሺ௧ሻ 𝑄෨ଵሺ𝑘, 𝑡ሻ = 0,       (39) 
where 𝑆ሺ𝑡ሻ = 𝜋𝑎ଶ, 𝑅ሺ𝑘, 𝑡ሻ is to be calculated from 

Eq. (26) and 𝑄෨ଵሺ𝑘, 𝑡ሻ ≡ 𝜌෤ଵሺ𝑘, 𝑡ሻ 𝑒|௞|ఙ೥௧  .       (40) 
For electrons with Gaussian transverse distribution, it is 

easy to obtain an equation with identical form of Eq.(39), 
except 𝑆ሺ𝑡ሻ = 4𝜋𝜎௥ଶ and 𝑅ሺ𝑘, 𝑡ሻ should be calculated from 
Eq.(18). 

PCA GAIN 
Evolution of the beam cross section, 𝑆ሺ𝑡ሻ, is determined 

by the envelope equation. If we use the normalized variable 
as defined in [2], the coupled equation of motion of the 
PCA system in the lab frame can be written as 𝑎ො′′ = 𝑘௦௖ଶ 𝑎ොିଵ + 𝑘ఉଶ𝑎ොିଷ,   (41) 

and 𝑄෨ଵ′′ሺ𝑘, 𝑠ሻ + ଶ௞ೞ೎మ ோሺ௞,௦ሻ௔ොమ 𝑄෨ଵሺ𝑘, 𝑠ሻ = 0  (42) 
with 𝑎ොሺ𝑡ሻ = 𝑎ሺ𝑡ሻ/𝑎଴, 𝑘௦௖ = 𝑙ඥ2𝐼଴/ሺ𝛽ଷ𝛾ଷ𝐼஺𝑎଴ଶሻ and 𝑘ఉ = 𝜀𝑙/𝑎଴ଶ. Figure 2 shows the PCA gain as a function of 

frequency, 𝑓௟௔௕ = 𝛾𝑘𝑐/ሺ2𝜋ሻ, with RMS beam width at 

waist of 0.1 mm for the Gaussian distribution and beam 
radius of 0.2 mm for the uniform distribution. 

Figure 2: Comparison of PCI amplification gain for two 
types of transverse charge distribution of the modulation: 
uniform (red) and Gaussian (green). We take 𝜎௩/𝑐 = 2 × 10ିସ, 𝑘௦௖ = 3.6 and 𝑘ఉ = 7 for the plots. 

SUMMARY 
By incorporating the reduction factor for the longitudinal 

electric field into the Hill's equation, we obtained the fre-
quency dependence of the PCA gain, which shows similar 
behaviour at low frequency as what obtained from 3D sim-
ulation (see Fig. 7 of [3]). 
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