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Abstract

By incorporating the longitudinal electric field reduction
due to finite transverse beam size into the Poisson equation
and solving the Hill's equation with time-dependent plasma
frequency, we investigate how the amplification of a
Plasma-Cascade Amplifier (PCA) depends on the spatial
frequency of the density modulation.

INTRODUCTION

E A new type of amplifier, plasma cascade amplifier
(PCA) has been proposed for a coherent electron cooling
(CeC) system [1-3]. Previously, the 1D model for PCA as-
sumes that the transverse distribution of the density pertur-
bation in the electrons is uniform and consequently, the
plasma frequency does not depend on the wavelength of
the perturbation [1]. This assumption is valid if the longi-
tudinal wavelength of the initial perturbation in the beam
frame is much shorter than the transverse width of pertur-
bation.

In this work, we explore the PCI gain at long wavelength
by assuming the perturbation in electrons’ density has non-
uniform transverse profile. Specifically, we solve the 3D
Poisson equation for given charge distribution (longitudi-
nal sinusoidal, transversely Gaussian or Beer-can), average
the electric field over the transverse plane and then apply
it to 1-D Vlasov equation. Similar to the previous calcula-
tion in [1], the Vlasov equation can be reduced to a Hill’s
equation but the plasma frequency now depends on the lon-
gitudinal wavelength of the density perturbation in the
electrons. By numerically solving the Hill’s equation, we
obtain the gain of a PCA as a function of spatial frequency,
k,.

EQUATION OF MOTION

For 1-D analysis, we treat each electron as a charge disc
with certain charge distribution and consequently the evo-
lution of the electrons' density perturbation in the beam
frame are determined by the linearized 1-D Vlasov equa-
tion,
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where v, is the longitudinal velocity of the electrons, z

is the longitudinal position along the bunch,
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is the longitudinal acceleration due to the longitudinal elec-
tric field E,(z,t) , e is the absolute value of the charge of
an electron and f; (z, v, t) is the density perturbation of the
electrons in the longitudinal phase space and f;(v,) is the
unperturbed distribution of electrons. The longitudinal
electric field due to density perturbation is determined by

the Poisson equation
_ en(r,z,0,t)
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where n(r, z,0,t) is the local spatial density perturbation
of the electrons. For the next step, we will try to solve
Eq. (3) and since there is no operation in time t for Poisson
equation, we will omit ¢t from the variables in the bracket
for now and will put it back when we solve the coupled-
Poisson-Vlasov equation system. If we assume that the
spatial distribution of the electron beam has cylindrical
symmetry and define

n(r,z) = py(2)fL(1), 4)
Eq. (3) becomes
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where @(r,z) is the electric potential, f, (1) is the trans-
verse surface density of electrons in unit of m~2 and p, (z)
is perturbation of electron line density in unit of m~2. Mul-
tiplying both sides of Eq. (5) by e ~*# and integrating over
z yields
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with plk,m) = [ e *2p(r,2)dk, (7)
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and Pl = [ e p, (2)dz. ©)
The solution of Eq. (6) can be written as
d(r) = c1lo(kr) + c, Ko (kr)
1 o1 Ig(kE)Ko(kr)—Ko(kE)Io(k
= r 0( {) 0( T') 0( 5) 0( T') 'f(f)df, (10)
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where I,(x) and K, (x) are the modified Bessel functions.

By applying the following boundary conditions,

¢(0) = 0 and lin(}(j)(r) # o, the coefficient, ¢; and c,
r—

can be determined as
Cl = O)

(11)

and
¢y = — [ Elo(kE) - F(E)dE.
Inserting Eq. (11) and Eq. (12) into Eq. 10 leads to
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The longitudinal electric field is obtained from
E,=-22— —ifoo ko (k,r)e*dk =
z 9z 2m J—o0 ’
— 7 E,(r, ket dk.
with
E,(r k) = —ik¢(r). (14)

If we assume that the transverse distribution of the elec-
tron density perturbation is Gaussian, i.e.
r2
)
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the longitudinal electric field averaged over the transverse
plane reads

Ez,avg (Z) = % f_aooc Ez,avg (k)eikzdks (16)
with
Bpavg = 2 J; (DB, (Mdr = — 2229 . R(ka,),
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and
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There are other forms of R(kar) such as
R(ka,) = k2a2e¥* 9 Ei(k?a?), (19)
and
R(koy) = 2ko, [ ®(x) sin(ka,x) dx, (20)
with
2
®P(x) = [E—Texp( )erfc (le)], (21)

and numerical evaluation verifies that they are equiva-
lent to Eq. (18).

For uniform transverse charge distribution, instead of
Eq. (15), we take

~ 1
f@O) =-2h(zH@-7)., (22
where H(x) is the Heaviside step function, a is the beam
radius and the normalization of f(r) is

2m [ rf(r)dr = =~ py (k). (23)
Inserting Eq. (22) into Eq. (14) yields
E,(r) = ik ——py (k)
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Averaging Eq. (24) over the transverse plane leads to
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Figure 1 shows that for the same RMS beams size of

0.1 mm, the field reduction for the uniformly distributed

beam is more significant than that for the electrons with
Gaussian transverse spatial distribution.
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Figure 1: Reduction factor as calculated from Eq. (18) for
the Gaussian transverse distributed electrons with RMS
beam width of 0.1 mm and that calculated by Eq. (26) with
beam radius of 0.2 mm.

Multiplying both sides of Eq. (1) by exp(—ikz) and in-
tegrating over z yields

3 z oz
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“with fl(k, v, t) = [* e"¥f, (z,v,,t)dz. Multiplying
both sides of Eq. (28) by exp(ikvzt) leads to
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Integrating Eq. (29) over time, t, leads to
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(29)
Replacing E,(k, t;) with the averaged field for uniform
distribution, Eq. (25), yields

_fl(k,vz,t) 71kvtf(kv 0)
i62 i (V )j /51 (kall)e—ikvz(r—t,)dt ’
kegm, dv. "N ) S (kot,) !
(30)
with

S*(k,t) =
R(ka)
Integrating Eq. (30) over v, gives
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where we used the following relation
ik, 0) = [, ik, v, v, (33)
Assuming the unperturbed electron line density is p, and
taking the following unperturbed velocity distribution,
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Eq. (32) becomes
pr(k,t) = 7 e7¥ f (k, v, 0)dv,
2 t p1(k,tq)
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Taking second time derivative of Eq. (36) yields
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where
R (k,t) =
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If we further assuming the initial perturbation has the

following form
1
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where S(t) = ma?, R(k, t) is to be calculated from
Eq. (26) and
Q1(k, t) = py(k, ) elklozt . (40)
For electrons with Gaussian transverse distribution, it is
easy to obtain an equation with identical form of Eq.(39),
except S(t) = 4ma? and R(k, t) should be calculated from
Eq.(18).

PCA GAIN

Evolution of the beam cross section, S(t), is determined
by the envelope equation. If we use the normalized variable
as defined in [2], the coupled equation of motion of the
PCA system in the lab frame can be written as

a"=kia'l+ k;&‘3, (41)
and
ZRSCR (k,s)

Q" (k,s) + == Qs(k,s) = 0 (42)

with a(t) = a(t)/ao, ks =1y 21,/(B3y314af) and
kg = el/ag. Figure 2 shows the PCA gain as a function of
frequency, fiap = vkc/(2m), with RMS beam width at
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waist of 0.1 mm for the Gaussian distribution and beam
radius of 0.2 mm for the uniform distribution.
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Figure 2: Comparison of PCI amplification gain for two
types of transverse charge distribution of the modulation:
uniform (red) and Gaussian (green). We take
o,/c =2%x107* ks, = 3.6 and kg = 7 for the plots.

SUMMARY

By incorporating the reduction factor for the longitudinal
electric field into the Hill's equation, we obtained the fre-
quency dependence of the PCA gain, which shows similar
behaviour at low frequency as what obtained from 3D sim-
ulation (see Fig. 7 of [3]).
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