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Abstract
The electron beam for the Advanced Photon Source

(APS) at Argonne National Laboratory is generated from
a thermionic RF gun and accelerated by a s-band linear ac-
celerator – the APS linac. While the APS linac lattice is
set up using a model developed with ELEGANT [1], the
thermionic RF gun front-end beam dynamics has been dif-
ficult to model. One of the issues is that beam properties
from thermionic gun can vary. As a result, linac front-end
beam tuning is required to establish good matching and max-
imize the charge transported through the linac. A traditional
Nelder-Mead simplex optimizer has been used to find the
best settings for the sixteen magnets. However it takes a long
time, and requires a higher signal to noise ratio than Gaus-
sian Process to get started tuning. The Gaussian Process
(GP) optimizer does not have the initial condition limitation
and runs several times faster. In this paper, we report our
data collection and analysis for the training of the GP hyper-
parameters, and discuss the application of GP optimizer on
the APS linac front-end optimization for maximum bunch
charge transportation efficiency through the linac.

INTRODUCTION
Front-end optimization of accelerators is a challenging

task due to the large input parameter space and their nonlin-
ear and correlated behaviour. Additional sources of complex-
ity are the uncontrollable drift in the experimental conditions
and measurement noise. In order to find the optimal machine
configuration, design values and simplified models are often
used to provide the initial settings. However, the optimal per-
formance cannot always be reached this way. This is because
some beam dynamics are complicated to model and the ac-
celerator has small compounding errors in every element
(for example, magnet calibration errors, alignment errors,
power supply regulation errors, etc.). Simplifications and
approximations adopted in the design model also contribute
to the differences observed between the empirical machine
behavior and the design model. Therefore, deterministic
approaches are insufficient and adjustments to the machine
setting are needed.

Traditional optimization methods that do not rely on a
model, such as Nelder-Mead Simplex [2], have been used
successfully for online optimization of accelerator systems.
In recent years there has been significant progress in the
development of online optimization algorithms for particle
accelerators. These include local methods based on approxi-
mations of the gradient, such as robust conjugate direction
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search (RCDS) [3], and global methods, such as evolution-
ary genetic algorithms [4]. However, the methods described
above usually take a long time to converge, or could be stuck
in a local optimum. The ability to find the global optimum in
a complex parameter space with high efficiency (in terms of
finding the optimum with the minimum number of function
evaluations) are two critical requirements for a suitable tun-
ing algorithm. ML-based optimization methods may be able
to improve both the speed of convergence and final solution
quality obtained during tuning.

Model-guided Bayesian optimization is a gradient-free
approach [5, 6], where a local surrogate model (for exam-
ple Gaussian Processes) is updated iteratively to guide the
selection of new points in the search for global optimum.
Bayesian optimization using Gaussian Processes has been
successfully demonstrated [7–11]. In this paper, we demon-
strate this approach for electron bunch charge optimization
in the Advanced Photon Source linear accelerator [12] (see
Fig. 1). We first describe the optimization task at APS linac,
along with the data collection and the choice of the opti-
mizer hyperparameters. We then compare the optimization
results of the Bayesian optimizer to other methods (RCDS
and simplex).

Figure 1: Schematics of the APS linac. The blue boxes
show the magnet locations of the RG2 (RF gun 2) front-end
used in the optimization. The current monitor (objective) is
downstream in the linac (L3:CM1).

THE APS PHOTO-INJECTOR LINAC
The Advanced Photon Source (APS) at the U.S. Depart-

ment of Energy’s Argonne National Laboratory is a user
facility that provides ultra-bright, high-energy storage ring-
generated X-ray beams. The APS accelerator complex is
composed of electron linear accelerator, Particle Accumu-
lator Ring (PAR), booster and a 7 GeV storage ring. The
APS electron linear accelerator is the first critical step in pro-
ducing high-energy X-rays used for frontier research. Thus,
optimizing the linac electron beam is a crucial task.

While the APS linac lattice is set up using a model devel-
oped with ELEGANT [1], the thermionic RF gun front-end
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beam dynamics have been difficult to model, especially for
a very low energy beam just emitted from a thermionic
cathode, where space-charge of the beam itself as well as
electromagnetic field variations caused by small geometrical
changes in thermionic cathode area can effect beam proper-
ties significantly. The beam properties from the thermionic
gun can vary from run to run, or when the RF gun is swapped,
resulting in variations of beam transport efficiency from the
RF gun to the injector of the PAR. Therefore, linac front-
end beam tuning is required to establish good matching and
maximize the charge transported through the linac.

Currently, the semi manual tuning procedure can take
several hours. A first step to the linac tuning procedure
involves maximizing charge delivered through the chicane
using a traditional simplex optimizer to set up the gun front-
end magnets. This is followed by a three-screen emittance
measurement downstream of the chicane to tune several
quadrupoles in order to match beam parameters to the de-
signed linac lattice. Then, the gradient and phase of the
last two RF sectors of the linac are finely tuned for optimal
beam energy and energy spread, and adjusting the Linac-To-
PAR trajectory to finally achieve 100% injection efficiency
through the PAR. In this work we optimize the gun front-end
magnets for maximum charge using the recently developed
Bayesian optimizer [7].

OPTIMIZATION OF THE LINAC
ELECTRON BEAM

The goal is to optimize the RF gun front-end magnets to
match the beam into the linac for maximal charge transporta-
tion efficiency. The S-band electron linac (375 - 500 MeV)
has two thermionic RF guns (RG2 and RG1) and one Photo-
Cathode RF gun, with thirteen 10-ft long accelerating struc-
tures. During normal operations, RG2 provides electron
beams for the storage ring to generate X-rays for the APS
users. We measure the bunch charge using a current monitor
(L3:CM1) which is downstream in the linac as shown in
Fig. 1.

The control variables include a total of 16 bipolar magnets
installed between the RF gun 2 (RG2) and the first accelerat-
ing structure, among which there are 12 magnets (shown in
blue) and 4 steering magnets (shown in orange). The 4 steer-
ing magnets are also used in the steering controller to adjust
the linac trajectory. Downstream of the front-end magnets,
this steering controller uses a total of 15 steering magnets at
each plane to center the linac beam. If the steering controller
is running during the optimization, it competes with the op-
timizer trying to adjust the 4 steering magnets. Therefore,
we used the 12 magnets (without the 4 steering magnets) in
the GP optimization tests.

In order to test the optimizer, we set a bad initial condition
for the bunch charge (0.1 nC) as a starting point. We tested
the L3:CM1 charge optimization using the 12 RG2 magnets
with and without the steering controller running. All of the
tested optimizers interfaced to the APS control system via
the Ocelot optimization framework [13].

BAYESIAN OPTIMIZATION USING
GAUSSIAN PROCESS

The Bayesian optimization framework uses an online prob-
abilistic model (e.g. Gaussian process) of the objective func-
tion and an acquisition function to select the next point to
sample as the space is searched. We used the upper confi-
dence bound that incorporates the surrogate model’s predic-
tion and uncertainty compatible with observations up to the
current observed point. The model is then updated with the
new point and this routine continues until an optimum has
been found.

The Gaussian Process (GP) models the bunch charge (ob-
jective) dependence on magnets currents (control variables)
at tuning time. In this work, we deployed an online GP
model [14]. The computation time per step is shorter than
the acquisition time (about 5 seconds to set magnets and
allow feedback systems to correct the trajectory and about
15 seconds to measure the bunch charge).

The GP model utilizes a kernel function that encodes
the similarity between two points drawn from the objec-
tive function. Motivated by the observation that the charge
response to the magnets looks bell-shaped when all other
parameters are fixed, we chose to compare the radial basis
function (RBF) kernel and the Matern52 kernel. We added
a Gaussian noise kernel to capture the noise in the objective
measurements.

The kernel’s hyperparameters (length scales, amplitude,
noise) are determined using a GP regression to historical data
achieved by maximizing the GP marginal likelihood [15];
an approach known as ML-II. For the amplitude and noise
parameters, we used archived data from the past two years
which includes optimization data and typical operation data.
For the magnets’ lengthscales, we performed dedicated raster
scans in order to capture the full behaviour of each magnet.
Figure 2 shows raster scans of each control magnet without
steering controller to maintain the linac trajectory during
scanning. After scanning the 12 magnets, they were indi-
vidually fit by a GP regressor using the scikit-learn package
with 5 restarts.

Figure 2: Raster scan examples of the 3 controlled magnets
without the steering controller running.

It is evident that some of the magnets are affected by hys-
teresis. The Hysteresis might complicate the optimization
process since the surrogate GP model of the beam charge as a
function of the magnets depends now not only on the current
magnet values but also on the historical sequence of the mag-
net values. The hysteresis behavior could be modeled and
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incorporated into the GP in a way that the GP model would
jointly learn the hysteresis and the beam charge response.
However, in this work, we chose to limit the magnet’s step
size and constrain the acquisition bounds to restrain hystere-
sis errors. Such proximal exploration was studied in [8],
where during optimization each input parameter is allowed
to travel only a small distance.

(a) (b)

Figure 3: Comparison of the GP optimization performance
with (a) either RBF or Matern52 kernels using 12 mag-
nets and with/without the steering controller running, and
(b) RBF kernel only with various hyperparameters.

RESULTS & DISCUSSION
We compare the optimization performance of the GP op-

timizer with traditional, model-independent optimizers such
as simplex and RCDS. Figure 3 shows the results of the
GP optimizer with different kernels, various hyperparam-
eters and with/without the steering controller running. In
this figure, “steer” or “nosteer” represents optimization with
or without the steering controller running correspondingly.
First, it is evident that the optimization performance is with-
out steering controller running was slightly better than the
optimization with the steering controller. This means that
the 12 magnets have some effect on the beam trajectory.

Figure 3a shows the optimization performance with RBF
and Matern52 kernels using 12 magnets and with/without
steering controller running. GP optimizer with RBF and
“nosteer” was very unstable but reached a bunch charge
of 0.87 nC with 48 steps, whereas the GP optimizer with
Matern 52 reached a bunch charge of 0.65 nC after 26 steps.
When the steering controller was running the GP optimizers
with both kernels reached a lower charge (0.62 nC for the
RBF and 0.5 nC for the Matern 52 kernels).

Figure 3b shows a comparison of the GP optimizer with
RBF kernel and various hyperparameters; ‘12’ or ‘16’ means
that the hyperparameters are obtained from raster scans per-
formed without or with the steering controller running cor-
respondingly. Fitting the GP regressor to obtain the length-
scales for the 12 magnets, using the raster scans data with
the steering controller running, means that the 4 steering
magnets, that were not used in optimization tests, were not
fixed in the raster scan. This resulted in different lengthscale
values for the 12 magnets used in the optimization. The
optimization of the GP with hyperparameters obtained from
raster scans with the steering controller running (labeled as
RBF_steer_16 and RBF_nosteer_16) increased quickly in
the first 10 steps. Overall, the performance of the GPs with
the different hyperparameters is relatively comparable.

We then performed three RCDS scans without the steer-
ing controller running, shown in Fig. 4a. Although the best
RCDS run reached a maximum charge of 1 nC, there is a
great difference between the runs. On average, the RCDS
runs reached 0.6 nC. Finally, in Fig. 4b we compare the aver-
aged performance of GP, RCDS and Nelder-Mead simplex
runs. Simplex didn’t perform well since the initial starting
point was very far from the optimal value. Usually, when
used in normal operation, simplex is used for fine tuning
from an initial point close to the optimal value. GP and
RCDS performed similarly on average, both much better
than simplex.

(a) (b)

Figure 4: (a) Three runs of RCDS; the spread between the
runs is quite large. (b) Averaged performance of GP, RCDS
and simplex optimizers.

CONCLUSION
Tuning and control are critical in accelerator commission-

ing and operation. While traditional tuning algorithms have
limitations in the efficiency or the ability to search large pa-
rameter spaces, machine learning based algorithms should
be able to reveal the global optimum in a parameter space
with high efficiency. In this paper, we demonstrated on-
line Bayesian optimization with hyperparameters estimated
from archived historical data or dedicated raster scans. This
optimizer can tune APS charge more efficiently than the
routinely used Nelder-Mead simplex. The GP optimizer was
more consistent in its performance on consecutive scans as
compared with RCDS.

Various interesting applications for the APS linac are yet
to be tested. For example, optimizing lattice (4 quads) and
10 steering magnets downstream of the magnetic chicane
for maximum linac-to-ring injection efficiency. Moreover,
further development of more expressive kernels [16, 17] or
better approaches to obtain hyperparameters that are more
representative of the machine [11] will benefit the commis-
sioning and operation of existing and future accelerators and
help automate accelerator operation in general.
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