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Abstract
Modern synchrotron light sources often require sophisti-

cated multipole field distributions that need to be realized
by complex magnet structures. To pre-validate these magnet
structures in simulation, the extraction procedure needs to
output standard multipoles as well as fringe effects. The ap-
proach presented in this manuscript uses a volumetric grid
map of the magnetic flux density as input. After computa-
tion of the reference trajectory (leapfrog integration), a large
linear system is solved to compute transverse polynomial
coefficients of the magnetic scalar potential in a series of
interconnected thin cylinders (linear basis functions) along
with that reference. The import of these coefficients into a
lattice simulation is discussed using a modification of the
tracking code tracy. The shown approach is routinely used
to check models of SLS 2.0 magnets for their properties.

INTRODUCTION
Analysis of 3d magnetic fieldmaps can be done by several

means, the most prevalent being direct import and interpo-
lation. However, it can be useful to import multipole fields
in a manner similar to the standard idealized magnet types
used in accelerator lattices. To do this, the design trajectory
through the field must be computed, and polynomial coeffi-
cients of the field around this trajectory must be found. While
this task seems straightfoward, it is non-trivial to obtain ro-
bust polynomial coefficients around a curved trajectory even
from an equidistant volumetric grid. In the following, we go
through the basic steps of such a fitting technique, collecting
field points in a “tube” around the curved design trajectory.
The procedure takes some inspiration from [1], where the
fitting of polynomials is briefly mentioned, and can also be
related to undulator studies in the machine plane [2].

REPRESENTATION
Cartesian magnet coordinates are defined as 𝑋, 𝑦, 𝑍 in the

following, with 𝑍 having only small angles with the beam
path 𝑠, and the direction of 𝑦 being perpendicular to the
machine plane 𝑋 −𝑍. For simplicity, the reference trajectory
will be assumed to be in the machine plane, so that the beam
𝑦 coordinate and the magnet coordinate are identical.

The inputs available for our computation are magnetic
flux density vectors 𝐵⃗(𝑖) on a grid of points 𝑋𝑖, 𝑦𝑖, 𝑍𝑖. For all
following computations, we rescale 𝐵⃗ to units of curvature
with beam rigidity 𝐵𝜌 = 𝑝/𝑞,

𝑏⃗(𝑖) = 𝐵⃗(𝑖) / (𝐵𝜌).
∗ https://orcid.org/0000-0002-5102-9546

MACHINE PLANE TRAJECTORY
The machine plane trajectory can be parameterized with

coordinates 𝑍(𝑠), 𝑋(𝑠). The curvature vectors in this plane
are interpolated using bivariate splines [3, 4] to obtain a
continuous curvature map 𝑏𝑦(𝑍, 𝑋). With this map, we use
the same coordinate system as in [5] so that

𝑑
𝑑𝑠 (𝑍

𝑋) = ( cos 𝜃(𝑠)
− sin 𝜃(𝑠)) , 𝑑𝜃

𝑑𝑠 = 𝑏𝑦(𝑍, 𝑋).

The approximated orbit with step size Δ𝑠 starts at 𝑍0 = 0, 𝑋0
and is mirror-symmetric in 𝑍; the first line segment has
𝜃0 = 𝑏𝑦(0, 𝑋0) Δ𝑠/2. From these initial conditions, the
leap-frog scheme is employed to construct the trajectory to
a given length. Afterwards, averaged tangent vectors

𝑛𝑍,𝑗 = cos ̃𝜃𝑗, 𝑛𝑋,𝑗 = − sin ̃𝜃𝑗 with ̃𝜃𝑗 =
𝜃𝑗−1 + 𝜃𝑗

2

can be constructed. For each trajectory point
𝑗 ∈ {0, … , 𝐽 − 1} one can define a transverse plane
normal to this tangent vector. All changes in particle
momentum are applied in these planes.

3D ANALYSIS AND GENERAL
MULTIPOLES

The flux density in the beam pipe, and thus 𝑏⃗(𝑋, 𝑦, 𝑍), is
curl- and divergence-free, and one can define Ω with

𝑏⃗(𝑋, 𝑦, 𝑍) = ∇⃗Ω(𝑋, 𝑦, 𝑍) and ΔΩ = 0.

Cylinder approach For each aforementioned transverse
plane, the field on that plane can be projected into that plane.
The projected field is defined using only in-plane values of
Ω, parameterized as Ω̃𝑗(𝑥, 𝑦),

𝑏̃(𝑗)
𝑥 (𝑥, 𝑦) =

𝑑Ω̃𝑗(𝑥, 𝑦)
𝑑𝑥 , 𝑏̃(𝑗)

𝑦 (𝑥, 𝑦) =
𝑑Ω̃𝑗(𝑥, 𝑦)

𝑑𝑦 . (1)

While these projected fields are still curl-free, they can
possess in-plane divergence Δ𝑥𝑦Ω̃ ≠ 0, giving rise to fringe
effects. Therefore Ω̃ needs to be parameterized as a general
2d function (see Fig. 1). For tracking purposes, we can just
use a standard 2d polynomial up to order 𝑀

Ω̃𝑗(𝑥, 𝑦) = ∑
𝑝𝑞

Ψ𝑗𝑝𝑞𝑥𝑝𝑦𝑞 with 0 < 𝑝 + 𝑞 ≤ 𝑀. (2)

Note that as we are using machine-plane symmetry, the Ψ
coefficients for even 𝑞 must vanish.

To find the Ψ coefficients, one can select all 𝑏⃗(𝑖) input
vectors located in a thin cylinder of height Δ𝑠 and radius 𝑅,
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Figure 1: Alternative 2d basis functions for Ω̃ using a com-
plex number 𝑐 = 𝑥 + 𝑖𝑦, inspired by [6] and Zernike poly-
nomials. Left and right edges of the triangle show standard
upright and skew multipoles, which have no in-plane diver-
gence. The interior maps fringe-like effects. In magnets
with machine-plane symmetry, only “Im” entries occur.

its center located in the respective trajectory point (𝑋𝑗, 𝑍𝑗),
and its base parallel to the plane. 𝑅 is chosen to be close to
the vacuum chamber radius, ensuring only valid in-vacuum
points are considered while also allowing robust conver-
gence.

Following steps are performed independently for each
trajectory point or cylinder 𝑗. The curvature applied to the
trajectory is subtracted from the field vectors. Then, they are
transformed to the 𝑏̃𝑥, 𝑏̃𝑦 components of the transverse plane,
including the projection of the grid to beam coordinates
𝑋𝑖, 𝑍𝑖 → 𝑥𝑖 (unmodified 𝑦𝑖), and used for fitting with Eqs. (1)
and (2) while excluding the curvature term Ψ𝑗01.

Tube approach While aforementioned approach works
in principle, it can be insufficient when fields are changing
significantly fast (in ∼ Δ𝑠) in longitudinal direction. A
solution is to employ linear basis functions in this direction.
We assume a potential in beam coordinates

Ω̃(𝑥, 𝑦, 𝑠) =
𝐽−1
∑
𝑗=0

Ω̃𝑗(𝑥, 𝑦) 𝑇 (𝑠 − 𝑗Δ𝑠
Δ𝑠 ) ,

where 𝑇(𝜒) denotes the triangle function with non-zero
values for 𝜒 ∈ ] − 1, 1[. This potential can also be used to
obtain all Ψ coefficients. Again only field points inside a
“tube” around the reference orbit with radius 𝑅 are valid. The
valid vectors 𝑏⃗(𝑖) are transferred to the respective transverse
planes 𝑏̃(𝑖)

𝑥 , 𝑏̃(𝑖)
𝑦 , and their grid locations transform 𝑋𝑖, 𝑍𝑖 →

𝑥𝑖, 𝑠𝑖 (𝑦𝑖 unchanged). Then, we obtain a linear system for the
yet unknown polynomial coefficients Ψ𝑗𝑝𝑞 as

𝑏̃(𝑖)
𝑥 = ∑

𝑗𝑝𝑞
Ψ𝑗𝑝𝑞 𝑝𝑥𝑝−1

𝑖 𝑦𝑞
𝑖 𝑇 (𝑠𝑖 − 𝑗Δ𝑠

Δ𝑠 ) ,

𝑏̃(𝑖)
𝑦 = ∑

𝑗𝑝𝑞
Ψ𝑗𝑝𝑞 𝑞𝑥𝑝

𝑖 𝑦𝑞−1
𝑖 𝑇 (𝑠𝑖 − 𝑗Δ𝑠

Δ𝑠 ) , (3)

involving all valid fieldmap points 𝑖, and all trajectory points
𝑗 (at 𝑠 = 𝑗Δ𝑠). This system (sparsity ∼ 1−2/𝐽) can be solved
using least-square solvers for sparse matrices [4].

EXAMPLES
To demonstrate the basic workings of the algorithm, we

generate four sets of 3d curvature maps. As first examples,
we begin with fields independent of the 𝑍 coordinate.

The most elementary field is a homogenic vertical field in
the machine plane, leading to the coefficients shown in Fig. 2.
As expected, all coefficients besides the linear increasing
bending angle vanish in numerical noise.
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Figure 2: Cumulative integral of polynomial coefficients
of homogenic vertical field. The curves int.Ψ[𝑝, 𝑞] hold
the coefficients Ψ𝑗𝑝𝑞 cumulatively integrated in 𝑠𝑗 using
trapezoid rule. From top left to bottom right: bending angle,
quadrupole coefficient, (both upright) sextupole polynomial
coefficients, octupole coefficients.

A similar situation occurs for the homogenic quadrupole.
Naturally, all coefficients besides the quadrupole coefficient
should be negligible, as can be observed in Fig. 3.

Square-wave synthesis of edge fields To model magnet
edges at position 𝑍 = ±𝐿/2, we require a smooth function
resembling a square wave of period length 2𝐿. We choose
𝐿 = 0.25 m and the function

𝑆(𝑧) = 8
9 + cos(𝜅1𝑧) − 1

9 cos(𝜅3𝑧) with 𝜅𝑛 = 𝑛𝜋
𝐿 . (4)

For a quadrupole with edge, we can synthesize the follow-
ing potential that will fulfill the Laplace equation

Ω(𝑋, 𝑦, 𝑍) = ∑
𝑛

4𝑎𝑛
cos(𝜅𝑛𝑍)𝐼2(𝜅𝑛𝑟) sin(2𝜙)

𝜅2
𝑛

,

with the cylinder coordinates 𝑟 = √𝑋2 + 𝑦2 and 𝜙 =
arctan2(𝑌, 𝑥). The 𝑛 = 0 summand reduces to 𝑎0𝑋𝑦. Using
Eq. (4) we insert the terms for 𝑎𝑛 to obtain the potential,
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Figure 3: Cumulative integral of polynomial coefficients of
homogenic quadrupole. See Fig. 2 for legend.

generating the 3d map using 𝑏⃗ = ∇⃗Ω. This map is used as
input for the Tube algorithm. In addition to the quadrupolar
field distribution, we can expect octupole and higher-order
edge effects consistent with quadrupole symmetry. The oc-
tupole component can be observed in Fig. 4 - as quadrupole
symmetry is consistent with 𝑥, 𝑦 interchange, the octupole
components (1,3) and (3,1) overlap.

For a dipole with edge, a 2𝐿-periodic solution to the
Laplace equation for looks like

Ω(𝑦, 𝑍) = ∑
𝑛

𝑎𝑛
cos(𝜅𝑛𝑍) sinh(𝜅𝑛𝑦)

𝜅𝑛
.
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Figure 4: Cumulative integral of polynomial coefficients of
quadrupole with edge. See Fig. 2 for legend.
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Figure 5: Cumulative integral of polynomial coefficients of
dipole with edge. See Fig. 2 for legend.

The 𝑛 = 0 summand reduces to 𝑎0𝑦. The 𝑎𝑛 values are again
taken from (4). The Ψ𝑗𝑝𝑞 coefficients are shown in Fig. 5.
As expected, bending reduces at the edge. We can observe
edge focusing as shown by the quadrupole term (1,1). There
is also a sextupolar fringe effect – it can be observed that
this field contribution is not a standard sextupole, as the
sextupole potential coefficients 𝑦3 and 𝑥2𝑦, represented by
(0,3) and (2,1) are not proportional to each other. The 𝑦3

term originates from the Taylor series of sinh(𝜅𝑛𝑦), while
the 𝑥2𝑦 term occurs due to the edge angle, mixing in the
𝑑2𝑏𝑦/𝑑𝑍2 term. The fringe effect also extends to octupolar
terms, 𝑥𝑦3 being caused by a combination of the sinh series
and edge-angle mixing of 𝑑𝑏𝑦/𝑑𝑍.

CONCLUSION

The presented algorithm is a part of the checking routine
for combined-function magnets of the Swiss Light Source
upgrade (SLS 2.0), investigating their effects on linear and
nonlinear optics. For this, a fork of the well-known track-
ing code tracy [7] is employed, allowing us to include the
aforementioned generalized multipoles (polynomials) into
the standard TPSA procedure. We can circumvent interpola-
tion of fieldmaps during tracking as well as ensure vanishing
curl. Note that this method can be adapted to vacuum cham-
bers with arbitrary shape by changing the cross section of
the tube. Also, irregular volumetric field data is supported
in the tube approach, if a start reference trajectory is known.
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