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Abstract

For studies of beam dynamics with complicated geome-
tries of the fields, it is necessary to track particles using
field maps, instead of an analytic representation of the fields
which is typically not available. These field maps come
about while designing elements such as realistic magnets or
radiofrequency cavities, and represent the field geometry on
a mesh in space. However, simple interpolation of the fields
from the field maps does not guarantee that the resulting
tracking scheme satisfies the symplectic condition. Here
we present a general method to decompose the field-map
potential in sum of interpolating functions that produces, by
construction, a symplectic integrator.

INTRODUCTION

Tracking codes frequently rely on simplified, analytic
representations of common elements, such as rf cavities or
quadrupoles, with multi-mode representations to generalize
and include, for example, sextupolar terms in an imperfect
quadrupole. This representation guarantees an analytic, func-
tional form of the potentials required for symplectic tracking,
allowing the code to analytically represent those gradients
and assuring the tracking method satisfies the symplectic
condition. For more realistic designs of, for example, rf
cavities, the design fields may be represented as field maps
– representing the fields on a mesh. In this case, tracking
requires interpolating between the mesh points. However,
there is no guarantee that this interpolation can capture the
gradients exactly, which is required for preserving the sym-
plectic condition.

We present a generic approach to represent the field maps
using local basis functions to define the interpolation. We
apply this approach to a generic integrator through 𝑠- and
𝑡-dependent fields described by Wu et al. [1]. Finally, we
demonstrate this method on the field map of an quadrupole-
with errors in a FODO cell repeated multiple times to verify
the symplectic condition.

A FIELD MAP HAMILTONIAN

To derive a symplectic tracking algorithm for particle
trajectories in potentials specified by field maps, we start at
the level of the Lagrangian. If we define four-velocities and
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potentials as

𝑟𝛼 = (𝑐𝑡, ⃗𝑟) = (𝑐𝑡, 𝑥, 𝑦, 𝑠)

𝑣𝜇 = (𝑐𝛾, ⃗𝑣) = (𝑐 𝑑𝑡
𝑑𝜏 , 𝑑𝑥

𝑑𝜏, 𝑑𝑦
𝑑𝜏, 𝑑𝑠

𝑑𝜏)

𝑣𝜇 = (−𝑐 𝑑𝑡
𝑑𝜏 , 𝑑𝑥

𝑑𝜏, 𝑑𝑦
𝑑𝜏, 𝑑𝑠

𝑑𝜏)

𝐴𝜇 = (𝜙
𝑐 , 𝐴𝑥, 𝐴𝑦, 𝐴𝑠) , (1)

where 𝑡 is the lab-frame time and 𝜏 proper time, and 𝑠 is the
beam axis. Then the Lagrangian of interest to us for s-based
tracking is [2]

𝐿 = −𝑚𝑐2√𝑣𝜇𝑣𝜇 + 𝑞𝑣𝜇𝐴𝜇, (2)

where 𝑞 is species charge. We can consider this Lagrangian
in the context of an ensemble

𝐿 = ∫ 𝑑 ⃗𝑟 𝑓 ( ⃗𝑟)
⎧{
⎨{⎩
−𝑚𝑐2√1 − ⃗𝑣2

𝑐2 − 𝑞𝜙( ⃗𝑟) + 𝑞
𝑐 ⃗𝑣 ⋅ ⃗𝐴

⎫}
⎬}⎭

, (3)

where 𝑓 is the phase space density. For an ensemble of single
particles, as we would trace in a single-particle tracking
code, the phase space density is a Dirac delta-function:

𝑓 ( ⃗𝑟, ⃗𝑟′) = ∑
𝑗

𝛿( ⃗𝑟 − ⃗𝑟𝑗)𝛿( ⃗𝑟′ − ⃗𝑟′
𝑗 ). (4)

Local Basis Representation for Field Maps
Suppose we know the fields for each component 𝑗 of the

potentials, 𝐴𝑗
𝜎, from the field map for a set of points {𝑅𝜎}.

To build our Hamiltonian, we require functions which in-
terpolate between those points. We will define an arbitrary
valid interpolation as one for which

𝐴𝜇( ⃗𝑟) = ∑
𝑎

𝑎𝜇
𝑎 Ψ( ⃗𝑟 − ⃗𝑟𝑎), (5)

such that
∑
𝑎

𝑎𝜇
𝑎 Ψ(𝑅⃗𝑎 − ⃗𝑟𝑎) = 𝐴𝜇

𝜎 (6)

for each 𝜎. We will leave the choice of Ψ generic for now,
although some representations will be more convenient than
others based on the structure of the field maps.

Inserting this field definition into the Lagrangian gives a
field map Lagrangian for particle 𝑗 as

𝐿𝑗 = −𝑚𝑐2√1 −
⃗𝑣2
𝑗

𝑐2 − 𝑞𝜑( ⃗𝑟𝑗) + 𝑞
𝑐 ⃗𝑣 ⋅ ⃗A( ⃗𝑟𝑗), (7)

where
A𝜇( ⃗𝑟𝑗) = ∑

𝑎
𝑎𝜇

𝑎 Ψ(𝑅⃗𝑎 − ⃗𝑟𝑗). (8)

At this point, we can define analytically any required deriva-
tive of ⃗𝐴 or 𝜙 in terms of derivatives of this valid interpola-
tion.
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Field Map Hamiltonian
With a valid field map, we can compute a Hamiltonian

for each particle we are tracking, through the usual method
of defining a canonical momentum

⃗𝑝𝑗 = 𝑚 ⃗𝑣𝑗
√1 −

⃗𝑣2
𝑗

𝑐2 + 𝑞
𝑐

⃗A( ⃗𝑟𝑗), (9)

and computing the Hamiltonian from the Legendre trans-
form [3]

H𝑗 = 𝑐√( ⃗𝑝𝑗 − 𝑞
𝑐

⃗A( ⃗𝑟𝑗))
2

+ 𝑚2𝑐2 + 𝑞𝜑( ⃗𝑟𝑗). (10)

This is the Hamiltonian for tracking particles in time, and
we have so far considered only fields that are static in time1.

In most accelerator applications, we are interested in track-
ing in either 𝑠-based on Frenet–Serret coordinates [4], and
we may apply that same computation to this Hamiltonian.
For this example we will consider a purely linear accelerator,
with no dipoles, to illustrate the concept. As most accel-
erator tracking codes use the longitudinal coordinate, 𝑠, as
the independent variable, the generator of 𝑠 translations is
−𝑝𝑧 ≡ P . Defining −𝑝𝜏 = H /𝑐 and 𝜏 = 𝑐𝑡 as canonically
conjugate coordinates, we can compute the Hamiltonian for
𝑠-translations:

P = √(𝑝𝜏 + 𝑞
𝑐 𝜑( ⃗𝑟⟂, 𝑠))

2
− ( ⃗𝑝⟂ − 𝑞

𝑐
⃗A⟂( ⃗𝑟⟂, 𝑠))

2
− 𝑚2𝑐2

+ 𝑞
𝑐 A𝑠( ⃗𝑟⟂, 𝑠). (11)

This Hamiltonian is of a form conducive to the symplectic
integrator derived by Wu et al. [1].

Most symplectic integrators use a split map approach [5],
based on the Lie algebraic formalism, e.g:

M(𝑠→𝑠+Δ𝑠) ≈ 𝑒−∶𝐻0∶Δ𝑠/2𝑒−∶𝐻1∶Δ𝑠𝑒−∶𝐻0∶Δ𝑠/2. (12)

This requires exact evaluation of the Poisson brackets, which
have partial derivatives of the coordinates. This means that
a “kick” needs to be computed as the exact gradient of a
scalar function.

𝑝𝑓 = 𝑝𝑖 + ∇𝑞𝑉 (𝑞𝑖) Δ𝑠. (13)

For 2- and 3-D field maps, interpolating the fields does not
guarantee the resulting kick is the exact gradient of a scalar
function.

⃗𝐹 = ∑
𝑖,𝑗,𝑘

𝑤𝑖,𝑗,𝑘 ⃗𝑓𝑖,𝑗,𝑘
?= ∇𝑞𝑉(𝑞). (14)

In other words, symplectic integration using field maps
requires an exactly differentiable interpolation between grid
points in the field map.

𝜕𝐴
𝜕𝑥 ( ⃗𝑟) = ∑

𝜎
𝑎𝜎

𝜕Ψ𝜎
𝜕𝑥 ( ⃗𝑟). (15)

1 The generalization to time-varying fields, such as RF cavity modes, is a
subject of future work

Figures 1 and 2 illustrate field maps and gradient maps
generated for this study. These maps are generated from
analytical expressions for quadrupole potentials

𝐴𝑠 = 𝑘(𝑥2 − 𝑦2). (16)

New random noise is added for each longitudinal slice, giv-
ing a rudimentary approximation of a measured 3D fieldmap
(without fringe fields). Each longitudinal slice uses a 2D
cubic spline interpolation, with linear interpolation between
longitudinal slices.
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Figure 1: Quadrupole field maps with no noise (a) and
10% random noise (b). These are generated from analyt-
ical expressions for quadrupole potentials, given random
noise to approximate a measured field-map, then interpo-
lated quadratically.

EXAMPLE: FODO CELL WITH
QUADRUPOLE FIELD MAPS AND NOISE

The Hamiltonian we use is of the form

H = 1
2 ⃗𝑝2

⟂ + 𝐾A𝑠(𝑥, 𝑦, 𝑠) (17)

for simplicity, as the symplectic nature of the integrator is
determined purely from taking the gradients exactly in the
integration kicks.
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Figure 2: Quadrupole gradient maps with no noise (a) and
2% random noise (b), generated and interpolated in the same
manner as the field in Fig. 1.

To demonstrate this technique, we use a second-order
drift-kick integrator using an exact derivative prescribed in
Eq. (13). This derivative is computed using cubic splines
for each longitudinal slice, and interpolating between slices
linearly. This linear interpolation does not affect the sym-
plecticity, as no derivatives with respect to 𝑠 are required.

First, we verify that the method is symplectic by checking
its stability through one million turns in a simple FODO cell
(Fig. 3a). Here we see a clean elliptical trajectory, as we
would expect for a particle in a purely linear FODO cell.

We then test the same integrator with an added 5% noise
between longitudinal field map slices (Fig. 3b). In the lat-
ter example, unphysical high-order nonlinearities are intro-
duced, but the Hamiltonian dynamics are preserved without
the unphysical heating or cooling of the trajectory that is
usually seen in non-symplectic integrators. This is sugges-
tive that this approach is well-suited for symplectic tracking
broadly.

DISCUSSION
We have presented a generic approach to building a sym-

plectic integrator from field map data of the vector potentials.

(a)

(b)

Figure 3: Single particle tracking through an interpolated-
field map FODO cell: (a) one million turns with zero noise
maps; (b) 10,000 turns with 5% noise.

This approach revolves around ensuring that all derivatives
or anti-derivatives that appear in the integration scheme are
exact, and is best achieved using differentiable interpolation
functions such as spline functions rather than the usual finite
differencing schemes. We have demonstrated this technique
for the simple example of a paraxial FODO cell, finding
that even with considerable noise levels in the computed
magnetic potential we still preserve Hamiltonian structures.
This work is suggestive of a new path for how tracking codes
handle field maps.
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