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Abstract
In recent years, nonlinear effects have been used to modify

the transverse beam distribution by adiabatic trapping into
nonlinear resonances. This allows generating transversally
split beams, in which the initial single Gaussian is divided
into several ones depending on the order and stability type of
the crossed resonance. An adiabatic modulation in presence
of nonlinear effects could be used to reduce the beam emit-
tance by acting on its transverse beam distribution. In this
paper, we present and discuss the special case of a beam with
an annular distribution, showing how the resulting emittance
could be reduced by means of nonlinear effects.

INTRODUCTION
Nonlinear effects introduce new phenomena in beam

physics. In recent years, they have been used extensively to
design novel beam manipulations in which the transverse
beam distribution is modified in a controlled way for differ-
ent purposes. This is the case for the beam splitting that is
at the heart of the CERN Multiturn Extraction (MTE) [1–4].
It is also possible to redistribute the invariants between the
two transverse degrees of freedom [5]. It is therefore natural
to study also whether nonlinear effects can be used to reduce
the linear invariants for a beam distribution, hence cooling
the beam emittance.

Nonlinear effects do not preserve the linear invariant, i.e.
the linear action or the so-called Courant-Snyder invariant.
In this sense, they can be used to provide a reduction of the
linear invariant without violating the Liouville character of
the Hamiltonian dynamics.

In this paper we discuss an initial step towards the possi-
bility of using nonlinear effects to cool a particle distribution.
Here we develop a framework to cool an annular beam distri-
bution, i.e. a distribution with non-zero density in an interval
of radii 𝑟1 < 𝑟 < 𝑟2, 𝑟1 > 0. The annular beam distributions
appear as a result of applying a single transverse kick to a
centred beam in presence of decoherence. Hence, a potential
application of cooling annular beams could be to restore the
initial centred distribution after a kick.

THE HAMILTONIAN MODEL
Transverse motion in the presence of an AC dipole is

described by a Hamiltonian of a generic oscillator with a
nonlinearity and a dipolar time-dependent exciter [6]

𝐻(𝑥, 𝑝𝑥, 𝑡) = 𝜔0
𝑥2 + 𝑝2

𝑥
2 + 𝑘3

3 𝑥3 + 𝜀𝑥 cos 𝜔𝑡 . (1)
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In the unperturbed (𝜀 = 0) action-angle coordinates
(𝜙, 𝐽) the Hamiltonian reads

𝐻(𝜙, 𝐽) = 𝜔0 𝐽 + Ω2
2 𝐽2 + 𝜀√2𝐽 cos 𝜙 cos 𝜔𝑡 ,

where we introduce the detuning term Ω2 = 𝑂(𝑘2
3).

In the rotating-frame reference, using the angle
𝛾 = 𝜙 − 𝜔𝑡, one obtains

𝐻(𝛾, 𝐽) = (𝜔0 −𝜔) 𝐽 + Ω2
2 𝐽2 +𝜀√2𝐽 cos(𝛾 + 𝜔𝑡) cos 𝜔𝑡 ,

taking into account the time derivative of the generating
function 𝜕𝐹/𝜕𝑡 = −𝜔 𝐽.

We average the perturbation term over the fast variable
𝜔𝑡, to obtain the slow-dynamics Hamiltonian

𝐻(𝛾, 𝐽) = (𝜔0 − 𝜔) 𝐽 + Ω2
2 𝐽2 + 𝜀

2
√2𝐽 cos 𝛾 ,

and after re-scaling of the action, one obtains

𝐻(𝛾, 𝐽) = 4𝐽2 − 2 𝜆 𝐽 + 𝜇√2𝐽 cos 𝛾 , (2)

where the parameters are defined as

𝜆 = 4
Ω2

(𝜔 − 𝜔0), 𝜇 = 4𝜀
Ω2

,

which can be changed upon acting on 𝜀 and 𝜔.
Equation (2) is a well-known Hamiltonian [7, 8], and can

be cast in the following form:

𝐻(𝑋, 𝑌) = (𝑋2 + 𝑌2)2 − 𝜆(𝑋2 + 𝑌2) + 𝜇𝑋 , (3)

using the Cartesian co-ordinates 𝑋 = √2𝐽 cos 𝛾,
𝑌 = √2𝐽 sin 𝛾.

When 𝜆 > (3/2)𝜇2/3, a hyperbolic fixed point exists at
𝑌 = 0 and

𝑋 = 𝑥c =
√6𝜆

3 cos ⎡⎢
⎣

𝜋
6 + 1

3 asin⎛⎜
⎝

3√6
4

𝜇
𝜆3/2

⎞⎟
⎠

⎤⎥
⎦

.

The separatrix divides the phase space in three regions, as
shown in Fig. 1, whose areas 𝐴𝑖 can be computed analytically.
Let 𝐻c = 𝐻(𝑥c, 0), then the separatrix curve 𝐻(𝛾, 𝐽) = 𝐻c
can be explicitly computed as

𝐽(𝛾) = 𝜆 − 2𝑥2
c

2 − 2𝑥c√𝜆 − 2𝑥2
c sin 𝛾 + 2𝑥2

c sin2 𝛾,

and 𝐽(𝛾) = 0 for 𝛾 = 𝛾0 = asin(√𝜆 − 2𝑥2
c /2𝑥c). The

areas enclosed are given by the following integrals:

𝐴1(𝜆, 𝜇) = ∫
𝜋−𝛾0

−𝛾0
d𝛾 𝐽(𝛾) = 𝜋𝜆

2 − 𝐾1 − 𝐾2,

𝐴3(𝜆, 𝜇) = ∫
𝛾0

−𝜋−𝛾0
d𝛾 𝐽(𝛾) = 𝜋𝜆

2 + 𝐾1 + 𝐾2,

𝐴2(𝜆, 𝜇) = 𝐴3(𝜆, 𝜇) − 𝐴1(𝜆, 𝜇) = 2(𝐾1 + 𝐾2),
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Figure 1: Phase-space portrait of the Hamiltonian (3) with
parameters 𝜆 = 0.1, 𝜇 = 0.01. The red line is the separatrix.

where

𝐾1 = 𝜆 asin
√𝜆 − 2𝑥2

c
2𝑥c

, 𝐾2 = 3
2

√(𝜆 − 2𝑥2
c )(6𝑥2

c − 𝜆) .

THEORY OF ADIABATIC SEPARATRIX
CROSSING

At first, an initial condition from an annular-shape distribu-
tion evolves in the outer region with an initial action 𝐽0, and
𝜆 and 𝜇 are slowly varied. At time 𝑡∗, 𝜆 = 𝜆∗, 𝜇 = 𝜇∗, and
𝐴3 = 2𝜋𝐽0, and according to adiabatic separatrix-crossing

theory [7, 9], having defined 𝜉 =
d𝐴𝑖/d𝑡
d𝐴3/d𝑡

, the orbit is

trapped in region 𝐺𝑖 (𝑖 = 1, 2) with a probability 𝑃𝑖

𝑃𝑖 = 𝜉 if 𝜉 ∈ ]0, 1[, 𝑃𝑖 = 0 if 𝜉 < 0, 𝑃𝑖 = 1 if 𝜉 > 1 ,

and with an action value after trapping given by 𝐴𝑖/2𝜋.
Given a distribution of initial conditions with action
𝐽 ∈ [𝐽0 − Δ, 𝐽0 + Δ], the expected value of their fi-
nal action after trapping, if Δ is sufficiently small, is
⟨𝐽⟩f = (𝐴1𝑃1 + 𝐴2𝑃2)/2𝜋 ≤ 𝐽0, which means that the
separatrix-crossing process reduces the emittance of the an-
nular distribution.

To optimise the cooling process, two protocols have been
considered: one consists in trapping all particles in 𝐺1, the
other in trapping all particles in 𝐺2, and then, for both pro-
cesses, adiabatically moving the resonance island to the
origin of phase space (videos illustrating these two protocols
can be found at [10, 11]).

Trapping in 𝐺1
To achieve complete trapping in 𝐺1, one needs, at the

separatrix-crossing point 𝑡 = 𝑡∗, to fulfil the condition

𝑃2 = 0, i.e.

d𝐴2
d𝑡 = 𝜕𝐴2

𝜕𝜆 + d𝜆
d𝜇

𝜕𝐴2
𝜕𝜇 ∣

𝜆∗,𝜇∗ = 0 ,

and a solution 𝜇′ = d𝜆/d𝜇 ∣𝜆∗,𝜇∗ is obtained. At the
separatrix-crossing point, it determines the coupled vari-
ation of 𝜆 and 𝜇 needed to achieve complete trapping in 𝐺1,
and it can be shown that 𝜕𝐴2/𝜕𝜆 > 0, 𝜕𝐴2/𝜕𝜇 > 0, and
𝜇′ < 0.

The trapping protocol is made of two
stages: in the first one, 𝜆 is kept at zero and
𝜇 is slowly increased up to 𝜇max = 𝜇∗ − 𝜆∗𝜇′, to
match the initial distribution to the phase-space topology
with the AC-dipole. Then, 𝜆 is increased linearly and 𝜇 de-
creased, according to the law 𝜇(𝑡) = 𝜇max + 𝜇′ 𝜆(𝑡), which
ensures that when 𝜆 = 𝜆∗, 𝜇 = 𝜇∗ then d𝜆/d𝜇 = 𝜇′. The
process ends when 𝜇 = 0, since in this state 𝐺2 disappears,
as the perturbation provided by the AC-dipole has been
switched off, and the particles trapped in 𝐴1 have been
transported to the centre of phase space.

Given an initial annular beam distribution at 𝐽 = 𝐽0, the fi-
nal expected action is 𝐽f = 𝐴1/2𝜋 = 𝜆∗−2𝐽0, where 𝜆∗(𝜇∗)
solves the implicit equation 𝐴3(𝜆, 𝜇) = 2𝜋𝐽0. This solution
exists for 2 ≤ 𝜆∗/𝐽0 ≤ 4 and 0 ≤ 𝜇∗/𝐽3/2

0 ≤ 8/√27. For
𝜆∗ = 2𝐽0, the final expected action reaches zero, but then
both |𝜇′| and 𝜇max diverge, so that an infinite perturbation
strength is needed for a 100% cooling efficiency [12].

In Fig. 2 (left) the expected cooling ratio ⟨𝐽⟩f/𝐽0 for an
annular distribution at 𝐽0 = 0.05 is shown as a function of
𝜇∗, while in Fig. 2 (right) the 𝐽0 dependence of the cooling
ratio is shown for different values of 𝜇∗, to identify the
range of actions for which it is possible to cool the beam.
The simulated data are obtained by means of a symplectic
integration of Eq. (1), with 𝜔0 = 0.414 × 2𝜋, 𝑘3 = 1, and
give a detuning coefficient Ω2 = −0.3196, using a FFT
evaluation [13].

Trapping in 𝐺2

All particles could be trapped in 𝐺2, varying 𝜇 while
keeping 𝜆 constant, as d𝐴2/d𝜇 = 2 d𝐴3/d𝜇 so 𝑃2 = 1.

This ensures that we have 𝐽f = 𝐴2/2𝜋 = 2𝐽0 − 𝜆∗/2
as final action, and the cooling is possible in the range
2 ≤ 𝜆∗/𝐽0 ≤ 4. Also in this case, depending on 𝜆∗, the
desired cooling target is a free parameter.

The first phase of our protocol consists, for time 𝑡 ∈ [0, 𝑡1],
in keeping 𝜆(𝑡) = 𝜆∗, while ramping 𝜇(𝑡) = 𝜇1𝜖𝑡, 𝜖𝑡1 = 1,
the only condition being 𝜇1 > 𝜇∗, which solves the equation
𝐴3(𝜆∗, 𝜇∗) = 2𝜋𝐽0.

After trapping in 𝐺2, the particle has a smaller action, but
the definition of the adiabatic invariant is not 𝐽 = (𝑥2+𝑝2

𝑥)/2
as 𝜇 ≠ 0. Thus, an adiabatic transport process to reduce
𝜇 to 0, keeping fixed the area 𝐴2, needs to be envisaged to
avoid particle detrapping, i.e.

d𝐴2
d𝑡 = d𝜆

d𝑡 (𝜕𝐴2
𝜕𝜆 + d𝜇

d𝜆
𝜕𝐴2
𝜕𝜇 ) = 0 . (4)
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Figure 2: Left: expected and simulated cooling ratio for trapping in 𝐺1 as a function of 𝜇∗. Initial distribution is an annulus
at 𝐽0 = 0.05. Right: cooling ratio, for different values of 𝜇∗, as a function of the initial annular distribution 𝐽0. The
Hamiltonian of Eq. (1) has been used, with 𝑘3 = 1, 𝜔0 = 0.414 × 2𝜋, Ω2 = −0.3196 for both plots.
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Figure 3: Left: expected and simulated cooling ratio for trapping in 𝐺2 as a function of 𝜆∗. Initial distribution is an annulus
at 𝐽0 = 0.05. Right: cooling ratio, for different values of 𝜆∗, as a function of the initial annular distribution 𝐽0. The
Hamiltonian of Eq. (1) has been used, with 𝑘3 = 1, 𝜔0 = 0.414 × 2𝜋, Ω2 = −0.3196, 𝜇1 = 0.02 for both plots.

From Eq. (4) we obtain a differential equation for 𝜇(𝜆)

d𝜇
d𝜆 = −2𝑥c√

𝜆 − 2𝑥2
c

6𝑥2
c − 𝜆

asin
√𝜆 − 2𝑥2

c
2𝑥c

. (5)

For 𝑡 ∈ [𝑡1, 𝑡2], we set 𝜆(𝑡) = 𝜆∗ − 𝜖(𝑡 − 𝑡1), and as
d𝜆/d𝑡 = −𝜖, from Eq. (5) we have a Cauchy problem for
𝜇(𝑡) that reads:

d𝜇
d𝑡 = d𝜆

d𝑡
d𝜇
d𝜆 = −𝜖d𝜇

d𝜆, 𝜇(𝑡1) = 𝜇1, 𝑡 ∈ [𝑡1, 𝑡2] ,

and can be solved numerically. This ensures that while 𝜆
is reduced, 𝜇 is increased, maintaining 𝐴2 constant and
reducing 𝐴1 to zero. The final time 𝑡2 is determined from
the equation 𝜇(𝑡2) = (2𝜆(𝑡2)/3)3/2, which is the existence
condition of the saddle points and thus of the islands. For
𝑡 ∈ [𝑡2, 𝑡2 + 𝑡1] the perturbation can be switched off while
ramping down 𝜆(𝑡) = 𝜆(𝑡2)(1 − 𝜖(𝑡 − 𝑡2)) and keeping
𝜇(𝑡) = (2𝜆(𝑡)/3)3/2, so that no resonance island is present.

In Fig. 3 (left) the expected cooling ratio ⟨𝐽⟩f/𝐽0 is shown
for an annular distribution at 𝐽0 = 0.05 as a function of 𝜆∗,
whereas in Fig. 3 (right) the 𝐽0 dependence of the cooling
ratio, for different values of 𝜆∗ , is shown, which identifies
the range of actions in which it is possible to cool the beam.

CONCLUSIONS AND OUTLOOK
The two protocols proposed for cooling annular beam

distributions feature an upper bound on the performance,
and the simulated data show clearly that this is around 90%
of cooling. A key result of the analyses carried out is that
both protocols have a significant cooling range, which means
that it is possible to cool a finite-thickness distribution.

The next step will focus on the study of a one-turn map
model for Eq. (2) using a Normal Form interpolating Hamil-
tonian. The map is richer than that considered here and
more realistic and it will provide a better insight on the ac-
tual performance of this cooling technique. A second step
consists in developing cooling protocols based on stable is-
lands that are created by magnetic nonlinear elements such
as sextupoles and octupoles, without the use of an AC dipole.
In this scenario, the cooling will be performed by acting on
the linear tune and on the strength of nonlinear elements
so to control position and surface of the stable resonance
islands [12].

Note that the annular beam distribution considered in
this studies can represent also the beam halo. Therefore, in
future applications to halo manipulation will be considered,
possibly including experimental tests at the LHC.
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