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Abstract
Accelerator physics needs advanced modeling and simu-

lation techniques, for beam stability studies but also for the
measurement of beam parameter like the Twiss parameters.
A deeper understanding of magnetic fields non-linearities
effects will greatly help in the improvement of future circular
colliders design, performance and diagnostics. This paper
studies the variation of the 𝛽-beating with the action of the
particle generated by non-linear Resonance Driving Terms,
both from a theoretical and an experimental point of view.

INTRODUCTION
In this paper, we study the possibility to use a new beam

based observable in order to localize and quantify non-linear
magnetic field errors in a circular accelerator. This observ-
able is the variation of the beta-beating with the particle
actions when it is measured from amplitude. First, the the-
ory is derived in presence of octupole field errors. Then, a
possible machine octupole configuration in the LHC at injec-
tion energy, is presented in order to generate a measurable
amplitude beta-beating.

In fact, data taken during machine development on the
LHC revealed a dependence of the measured beta-beating on
the particle action similar to that of the BPM noise (against
the oscillation amplitude), hence casting doubt on the real
origin of the amplitude-dependent beta-beating observed
in Fig. 1. Data correspond to different machine conditions:
with uncorrected first order amplitude detuning (called sb4
in Fig. 1); with a quite high value of the dodecapole corrector
to generate second order detuning (called sb6); and with-
out dodecapole corrector strength and with corrected first
order detuning (called nob). In all the cases, the variation of
the RMS beta-beating is of the order of 1-2 % with similar
parabolic decrease with the amplitude.

THEORY
In order to express the variation of the measured beta-

beating with the action, we use the Normal Forms formalism
described in Ref. [1–3]. The general expression of the com-
plex Phase-Space Courant-Snyder variables at a position (𝑏)
and after 𝑁 revolutions, are:

ℎ(𝑏)
𝑥,− = √2𝐼𝑥𝑒𝑖[𝜇𝑥𝑁+𝜇(𝑏)

𝑥,0] ⎡⎢
⎣
1 − 2𝑖 ∑

𝑗𝑘𝑙𝑚
𝑗𝑓 (𝑏)

𝑗𝑘𝑙𝑚2𝐼
𝑗+𝑘
2 −1

𝑥 ×

×2𝐼
𝑙+𝑚

2𝑦 𝑒𝑖[(𝑘−𝑗)(𝜇𝑥𝑁+𝜇(𝑏)
𝑥,0)+(𝑚−𝑙)(𝜇𝑦𝑁+𝜇(𝑏)

𝑦,0)]] , (1)
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Figure 1: Variation of the Horizontal RMS beta-beating com-
puted from the spectral line amplitude for different actions
on horizontal axis, for different LHC Machine Development
data.

with the particle action 2𝐼𝑢, and 𝜇(𝑏)
𝑢,0 the initial phase at

the observation position (𝑏) (similarly for the vertical axis).
Since the term ℎ𝑥,± is a sum of exponential functions, it is
transformed into distinct Dirac terms in the Fourier space, i.e.
spectral lines. We note 𝐻(𝑏)

ℎ± (𝑛𝑥, 𝑛𝑦) the Fourier Transform
of respectively ℎ(𝑏)

𝑥,± at a frequency of 𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦. Since
the particle position in the normalized space is equal to
̃𝑥 = (ℎ(𝑏)

𝑥,+ + ℎ(𝑏)
𝑥,−)/2, and being their Fourier transforms:

𝐻(𝑏)
ℎ− (1, 0) = √2𝐼𝑥𝑒𝑖𝜇(𝑏)

𝑥,0 (2)

𝐻(𝑏)
ℎ− (−1, 0) = −2𝑖√2𝐼𝑥𝑒−𝑖𝜇(𝑏)

𝑥,0 ∑
𝑗,𝑙⩾0

(𝑗 + 2)𝑓 (𝑏)
(𝑗+2)𝑗𝑙𝑙2𝐼 𝑗

𝑥2𝐼 𝑙
𝑦

≈ −2𝑖√2𝐼𝑥𝑒−𝑖𝜇(𝑏)
𝑥,0 [3𝑓 (𝑏)

31002𝐼𝑥 + 2𝑓 (𝑏)
20112𝐼𝑦] , (3)

it follows that:

2𝐻(𝑏)
̃𝑥 (1, 0) = 𝐻(𝑏)

ℎ− (1, 0) + 𝐻(𝑏)
ℎ− (−1, 0)

= √2𝐼𝑥𝑒𝑖𝜇𝑥(𝑏) [1 + 6𝑖𝑓 (𝑏)
31002𝐼𝑥 + 4𝑖𝑓 (𝑏)

20112𝐼𝑦] . (4)

In order to measure the beta-beating, one of the methods
consists in using the amplitude of the spectral line 𝐻(𝑏)

̃𝑥 (1, 0)
and dividing it by the action 2𝐽𝑥, previously estimated using
another method. For linear optics 2𝐽𝑥 is equivalent to 2𝐼𝑥, in
presence of non-linear perturbation this might not necessar-
ily be the case. Suppose 2𝐽𝑥 = 2𝐼𝑥 and let’s decompose the
Resonance driving terms (RDT) 𝑓 (𝑏)

𝑗𝑘𝑙𝑚 into polar coordinates,
with 𝑞(𝑏)

𝑗𝑘𝑙𝑚 its phase and 𝑎(𝑏)
𝑗𝑘𝑙𝑚 its amplitude, in order to find

the expression of the amplitude of the spectral line. Using
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𝑟 = 𝑗𝑘𝑙𝑚, it can be demonstrated that:

∣1 + 2𝑖 ∑
𝑟

𝑎𝑟𝑒−𝑖𝑞𝑟 ∣
2

= 1 + 4 ∑
𝑟

𝑎𝑟 sin(𝑞𝑟) + 4 ∑
𝑟

𝑎2
𝑟

+8 ∑
𝑟<𝑟′

𝑎𝑟𝑎𝑟′ cos(𝑞𝑟 − 𝑞𝑟′) (5)

= 1 + 4 ∑
𝑟

ℑ{𝑓𝑟} + 4 ∑
𝑟

𝑎2
𝑟

+8 ∑
𝑟<𝑟′

ℜ{𝑓𝑟𝑓𝑟′}. (6)

Thus, applied to Eq. (4), the Octupolar contributions to
the spectral line amplitude in the normalised space follows:

|2𝐻(𝑏)
̃𝑥 (1, 0)|2 = 2𝐼𝑥 [1 + 12𝑎(𝑏)

3100 sin(𝑞(𝑏)
3100)(2𝐼𝑥)

+8𝑎(𝑏)
2011 sin(𝑞(𝑏)

2011)(2𝐼𝑦) + 36𝑎(𝑏)2
3100(2𝐼𝑥)2

+16𝑎(𝑏)2
2011(2𝐼𝑦)2 + 48𝑎(𝑏)

3100𝑎(𝑏)
2011×

× cos(𝑞(𝑏)
3100 − 𝑞(𝑏)

2011)(2𝐼𝑥)(2𝐼𝑦)] (7)

= 2𝐼𝑥Ξ(𝑏)
𝑥 (2𝐼𝑥, 2𝐼𝑦) (8)

|2𝑉 (𝑏)
̃𝑦 (0, 1)|2 = 2𝐼𝑦 [1 + 12𝑎(𝑏)

0031 sin(𝑞(𝑏)
0031)(2𝐼𝑦)

+8𝑎(𝑏)
1120 sin(𝑞(𝑏)

1120)(2𝐼𝑥) + 36𝑎(𝑏)2
0031(2𝐼𝑦)2

+16𝑎(𝑏)2
1120(2𝐼𝑥)2 + 48𝑎(𝑏)

0031𝑎(𝑏)
1120×

× cos(𝑞(𝑏)
0031 − 𝑞(𝑏)

1120)(2𝐼𝑥)(2𝐼𝑦)] (9)

= 2𝐼𝑦Ξ(𝑏)
𝑦 (2𝐼𝑥, 2𝐼𝑦), (10)

where Ξ(𝑏)
𝑥 (2𝐼𝑥, 2𝐼𝑦) and Ξ(𝑏)

𝑦 (2𝐼𝑥, 2𝐼𝑦) are the new expres-
sions of the beta-beating, which depend on the particle ac-
tions. Obviously, the expression is not enough in this form.
Octupoles also excite higher Resonance Driving terms, such
as dodecapole one, and the impact of the action-independent
beta-beating term from the 𝑏2 is not considered in this equa-
tion [4, 5].

MACHINE CONFIGURATION
Here, the aim is to increase on purpose the measured am-

plitude beta-beating (ABB) using the octupoles installed in
the LHC machine, without first order amplitude detuning.
Given the BPM noise level discussed previously, 5% hor-
izontal amplitude beta-beating at 0.01 m is used as target
value. To this purpose, we solve the system ℎ⃗ = A ⃗𝐾 where:

• ℎ⃗: a vector of target Hamiltonian contri-
butions which act on Amplitude detuning
and RDTs (at a reference BPM (𝑏)), i.e.
(ℎ2200, ℎ1111, ℎ0022, ℜ(𝑓 (𝑏)

3100), ℑ(𝑓 (𝑏)
3100), … );

• A: a matrix of respectively Amplitude detuning and
RDTs coefficients between the source of the 𝑏4 (oc-
tupole correctors 𝑜𝑖) and the BPM (𝑏);

• ⃗𝐾: a vector of octupole 𝑜𝑖 integrated strengths.

In ℎ⃗, we fix ℎ2200, ℎ1111, ℎ0022 to be zeros. The terms
ℑ(𝑓 (𝑏)

3100) is such that it generates the 5 % horizontal am-
plitude beta-beating, using the expressions for Ξ𝑢 in Eq. (8).

The other terms can be either fixed to zeros or free parame-
ters. As the target values of ℎ⃗ are fixed at a Reference BPM,
the system has a unique solution.

In the LHC, there are three types of octupoles: the main
octupoles in the Arc cells used for Landau damping (named
MO); the octupole correctors attached to every-other dipole
in the Arc cells (named MCO); and the octupole correctors
in the Interaction Regions (named MCOX). We start con-
sidering the octupole correctors (MCOX) in the Interaction
regions (IR1, IR2, IR5 and IR8) only.

In this case, called HABB case 1, the vector ℎ⃗ is composed
of:

• ℎ2200, ℎ1111 and ℎ0022 equal to zeros such that they do
not generate direct or cross amplitude detuning;

• the RDT term 𝑓 (𝑏)
3100 with its real and imaginary parts

respectively equal to zeros and 5/12 m−1 such that the
direct horizontal amplitude beta-beating increases by
5 % when the action reaches 0.01 m;

• the RDT term 𝑓 (𝑏)
0031 is also set to zero such that the

direct vertical amplitude beta-beating is trivial.

All the other RDTs are unconstrained in the inversion of
ℎ⃗ = A ⃗𝐾. The reference BPM, called “BPM.34R8.B1”, is at
the position S = 18 325.04 m. It is located near the middle
of the arc between the IP8 and IP1. Figure 2 shows only the
values of the RDTs related to the direct beta-beating when
the action increases in the x-plane. Those values are shown
for each BPM around the LHC and the reference BPM is
marked in red. The vector ℎ⃗ has size 7 (3 for Direct and
Cross Amplitude Detuning terms and 2 × 2 for the RDTs
terms), with the 7 octupole correctors in the IRs, it gives an
invertible system. Their respective integrated strengths are
reported in Table 1.
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Figure 2: Prediction for case 1 of the values of the RDTs
𝑓3100 at all the LHC BPM positions. The reference BPM
“BPM.34R8.B1” (S= 18 325.04 m) is marked in red.
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Figure 3: Direct ABB from spectral line amplitude. On the left are the results of the simulations, and on the right the
difference between the simulations and Ξ𝑥. The action (noted 2𝐽𝑥) is the average over BPMs measured from spectral line
amplitude.

Table 1: Integrated Strength (K in m−3) of Octupole Correc-
tors

MCOX3.L5 MCOX3.R5 MCOX3.L8
1739.11 -207.69 1468.17

MCOX3.R8 MCOX3.L1 MCOX3.R1 MCOX3.R2
-2142.16 -148.01 -1384.10 680.42

Figure 3 shows how the horizontal beta-beating vary along
the LHC when the horizontal action increases using the con-
figuration of octupolar correctors mentioned before (see
Table 1). The tracking simulations where made using Six-
Track and the particle positions at each BPMs are analysed
with the BetaBeat.src code, an analysis code developed at
the CERN (Ref. [6]). The color of the dots corresponds to
the particle actions given by BetaBeat.src. As the action is
computed using a linear approximation, so it is noted as 2𝐽𝑥.

With this octupole configuration, the model and the simu-
lation agree pretty well for the direct ABB (Δ𝛽/𝛽𝑥) even at
high action. Three regions of the LHC have visible different
behaviour (corresponding to three direct ABB values): from
Interaction Point IP8 to IP1, from IP1 to IP5 and from IP5 to
IP8. The first region has strongest direct ABB, the smallest
value is in the third region. It is interesting to note that IP1,
IP5 and IP8 are the regions where the strongest correctors
are located.

The simulated cross ABB (Δ𝛽𝑦/𝛽𝑦) also agrees well with
the theory for low action, but a discrepancy appears at high
action (see Ref. [5]). The three regions observed previously,
are not clearly defined here. But it can still be noted that the
cross ABB is smaller between IP1 and IP2. As a reminder,
𝑓2011 is not minimized in this case.

As the beta-beating measured from the phase is based on
a different approximation, the difference between those two
methods could at least indicate the approximated location
of the strongest source of non-linearities.

CONCLUSION
This paper presents the expression of the beta-beating

varying with the particle action, when measurement is com-
puted from the spectral line amplitude. This expression is
developed for normal octupoles and it is compared to track-
ing simulations using the LHC optics at injection energy.
The octupole correctors strengths are selected such that they
do not generate first order direct or cross amplitude detuning
and such that the beta-beating increases by a least 5 % at one
specific BPM, when the action increases by 0.01 m on the
horizontal axis. One possible configuration, using the oc-
tupole correctors in the Interaction Region only, is presented
in this paper.
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