
NOVEL NON-LINEAR PARTICLE TRACKING APPROACH EMPLOYING
LIE ALGEBRAIC THEORY IN THE TensorFlow ENVIRONMENT

J. Frank, M. Arlandoo, P. Goslawski, J. Li, T. Mertens, M. Ries, L. Vera Ramirez
Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (HZB), Berlin, Germany

Abstract
With this paper we present first results for encoding Lie

transformations as computational graphs in Tensorflow that
are used as layers in a neural network. By implementing
a recursive differentiation scheme and employing Lie alge-
braic arguments we were able to reproduce the diagrams
for well known lattice configurations. We track through
simple optical lattices that are encountered as the main con-
stituents of accelerators and demonstrate the flexibility and
modularity our approach offers. The neural network can
represent the optical lattice with predefined coefficients al-
lowing for particle tracking for beam dynamics or can learn
from experimental data to fine-tune beam optics.

INTRODUCTION AND MOTIVATION
Machine learning and deep learning approaches have be-

come essential tools for analyzing big and complex struc-
tures. Recently, an algorithm was proposed to enable par-
ticle tracking and beam optics tuning in accelerator ma-
chines [1, 2]. The results seem promising, but we find it
cumbersome to pre-calculate the weight matrices that are
then implemented in a neural network (NN) for forward
propagation. We present a novel approach where we encode
Lie transformations as computational graphs and thus obtain
a natural structure for a NN. Each Lie transformation propa-
gates a charged particle through an accelerator element and
is represent by a NN layer - what we denote as Lie layers.

Our approach presents the benefit that we only need to
create the computational graph comprised of Lie layers and
the succeeding evaluation takes place in the optimized Ten-
sorFlow (TF) environment [3] with its Keras interface [4]. In
addition, we are able to input generic Lie maps for machine
elements and train the network by feeding it real data. This
allows us to extract dominant non-linear contributions from
an existing accelerator.

LIE MAPS
For simplicity we assume Hamiltonians with no explicit

dependence on the independent variable. For phase space
coordinates 𝑟 ∈ R6 Hamilton’s equations of motion are
the first order coupled differential equations that give the
evolution of a physical system by

¤𝑟 = −𝐽 𝜕𝐻
𝜕𝑟

, (1)
where

𝐽 =

(
0 𝐼

−𝐼 0

)
(2)

is the symplectic matrix comprised of the 4 𝑛 × 𝑛 blocks, 𝐼
being the identity matrix. If we interpret the Poisson bracket

as the symplectic 2-form in phase space, we can define the
Lie operator as

{𝐻, ·} =: 𝐻 :=
∑︁
𝑖

𝜕𝐻

𝜕𝑥𝑖

𝜕

𝜕𝑝𝑖
− 𝜕𝐻

𝜕𝑝𝑖

𝜕

𝜕𝑥𝑖
(3)

and formally represent the solution to the equations of mo-
tion Eq. (1) as Lie maps

𝑟 (𝑠) = 𝑒−𝑠:𝐻:𝑟 (0) =
∞∑︁
𝑘=0

(−𝑠 : 𝐻 :)𝑘
𝑘!

𝑟 (0), (4)

where : 𝐻 :𝑘 𝑟0 = {𝐻, {..., {𝐻, 𝑟0}}} are 𝑘-nested Poisson
brackets. We refer the reader to [5, 6] for details.

LIE LAYER ARCHITECTURE
Let us denote each Lie map by M𝑖 = 𝑒−𝑠:𝐻𝑖 :, then the

optical lattice can be represented by the 1-turn map
M = M1 ◦M2 ◦ ... ◦M𝑛. (5)

For an element of length 𝐿 we create a computational
graph able to evaluate the corresponding Lie operators
Eq. (3) as part of a recursive differentiation scheme and
hence, create a Lie Transformation Layer through the defini-
tion of Eq. (4). In particular we have conceived two imple-
mentations:

• LieTransLayer : a general implementation based on
automatic differentiation (tf.GradientTape()) con-
ceived for any function that can be represented with TF
operations.

• LieTransPolyLayer : a specific implementation for
polynomials optimizing the evaluation with exact differ-
entiation. A polynomial with 𝑘 terms in 𝑚 variables is
hence represented as a 𝑘 × (𝑚 + 1)-matrix, allowing us
to efficiently rewrite all the transformations needed for
the Lie transformation (polynomial multiplication, par-
tial derivation, simplification and evaluation) as tensor
operations.

For instance, the paraxial approximation of a quadrupole
will be expressed as a LieTransLayer as follows:

def H(x, px, y, py, z, pz,
extra_vars, coefficients):

k, beta = extra_vars
return (px**2 + py**2 + k*(x**2 - y**2)
+ (pz/beta)**2)/2

layer = LieTransLayer(H, L = .27, N = 10,
extra_vars = [.8, 1.])

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-TUPAB215

TUPAB215C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1920

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

where 𝑁 = 10 is the cutoff of the Lie map, extra_vars
are used for element properties (e.g. magnet strengths) and
coefficients can be a trainable variables. Since our layer
implementations instantiate tf.keras.layers.Layer,
they can be formally concatenated, evaluated in eager mode
or pre-built as a computational graph, allowing variable up-
dates and coefficient tuning with optimization methods. In
every case we take advantage of TF performance, allow-
ing us to evaluate Lie maps with high truncation orders in
milliseconds.

We note that the cutoff produces only a symplectic 𝑁-jet,
which leads to the violation of the symplectic condition in
general. However, by choosing a large enough N and slicing
each element

𝑒−𝐿 : 𝐻𝑖 :
=

(
𝑒−

𝐿
𝑛

:𝐻𝑖 :
)𝑛

= 𝑒−
𝐿
𝑛

:𝐻𝑖 :...𝑒−
𝐿
𝑛

:𝐻𝑖 :︸ ︷︷ ︸
n-times

(6)

or by the "leap-frog" decomposition

𝑒−𝐿:𝐻𝑖 : = 𝑒−
𝐿
4 :𝐻𝑖 :𝑒−

𝐿
2 :𝐻𝑖 :𝑒−

𝐿
4 :𝐻𝑖 : (7)

we were able to reduce the error bellow machine precision.
Additionally, we are also able to have generic polynomials

with tunable coefficients
M𝑖 = 𝑒−𝐿:𝐻𝑖 : ≈ 𝑒: 𝑓 : (8)

or in terms of Lie layer

x = LieTransLayer(f,N,L,coefficients=c)(x)

where c will represent the coefficients of the polynomial
𝑓 . The TF framework will allow us to use real data from
the accelerator to tune the coefficients and so pinpoint dom-
inant non-linear effects in the optical lattice by order of
non-linearity.

TRACKING THROUGH FODO
We will demonstrate the proposed approach on the optical

lattice of a simple FODO cell
MFODO = MQF ◦MD ◦MQD ◦MD ◦MQF, (9)

where QF denotes focusing quadrupole, QD defocusing
quadrupole and D drift spaces. In particular, the FODO
lattice is set with the following parameters:

• Focusing Quadrupole: 𝐿 = 0.27, 𝑘 = 0.8

• Defocusing Quadrupole: 𝐿 = 0.5, 𝑘 = −0.57

• Drift: 𝐿 = 2.48

• 𝛽 = 1

Figure 1 depicts phase space plots, where we tracked with
our model and compare it to tracking with the exact solutions
of the Lie maps. We use the full drift Hamiltonian and the
paraxial approximation to represent quadrupoles as linear
transfer maps.

In addition, TF allows us to calculate the Jacobian matrix
𝑀 of our model as a computational graph so we can assess

Figure 1: Phase space portraits for tracking 32 particles dur-
ing 1 million turns through the FODO cell Eq. (9). Upper
left: exact tracking with transfer maps. Upper right: con-
catenation of LieTransLayers with element slicing Eq. (6)
(𝑛 = 10) and truncation order 4. Lower left: concatenation
of LieTransLayers with leap-frog decomposition Eq. (7)
and truncation order 8. Lower right: concatenation of
LieTransPolyLayers with truncation order 12.

the symplectic condition through the symplectic error at a
point 𝑥 ∥𝑀 (𝑥)𝑇 𝐽𝑀 (𝑥) − 𝐽∥
where 𝐽 is the symplectic matrix Eq. (2). The corresponding
evaluation for several model configurations with a cloud of
1000 points sampled from N(0, 0.1) is shown in Table 1.

LEARNING FROM GENERATED DATA
FOR FODO

As a further feature of our implementation, the functional
concatenation of our Lie layers can be easily encapsulated
and trained as a neural network. Notice that the resulting
network will be an almost deterministic function, meaning
that the only trainable parameters will be those that we set as
free variables in the corresponding Hamiltonian definition.

As a proof of concept, we want the network structure
to learn the coefficients of the second degree terms in the
paraxial approximation of the quadrupole Hamiltonian

𝑤1𝑥
2 + 𝑤2𝑝

2
𝑥 + 𝑤3𝑦

2 + 𝑤4𝑝
2
𝑦 + 𝑤5𝑧

2 + 𝑤6𝑝
2
𝑧 .

For this, we replace the two original instances of H func-
tion in the corresponding LieTransLayer representing QF
and QD Hamiltonians with a parametrized version and com-
pile the concatenation as a neural network, whose trainable
weights will be the corresponding Hamiltonian coefficients
for QF and QD . Figure 2 shows the learning process with a
simple RMSE loss function calculating the deviation w.r.t.
the training data. This training data is generated in real time

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-TUPAB215

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

TUPAB215

1921

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Table 1: Symplectic Error – FODO with Paraxial Approximation of the Quadrupoles

Order Implementation Slice Trick Norm Avg. Norm Std. Norm Max. Jacobian Graph Build
1 LieTransLayer Leap frog 0.0341348812 0.062019799 17.733.960.929 0.306 secs
1 LieTransLayer 0.0908883922 0.1528337494 4.400.475.823 0.146 secs
1 LieTransLayer n = 10 0.009324259 0.0181332906 0.5229723359 0.722 secs
1 LieTransPolyLayer 0.0908883922 0.1528337494 4.400.475.823 6.353 secs
4 LieTransLayer Leap frog 1.17E-006 8.74E-008 3.14E-006 1.887 secs
4 LieTransLayer 7.23E-005 5.32E-006 0.0001921531 0.659 secs
4 LieTransLayer n = 10 7.24E-010 5.45E-011 1.96E-009 6.112 secs
4 LieTransPolyLayer 7.23E-005 5.32E-006 0.0001921531 6.299 secs
8 LieTransLayer Leap frog 5.82E-013 3.32E-014 9.73E-013 128.107 secs
8 LieTransLayer 5.96E-010 3.42E-011 9.89E-010 42.064 secs
8 LieTransLayer n = 10 4.28E-015 1.51E-014 4.75E-013 423.84 secs
8 LieTransPolyLayer 5.96E-010 3.42E-011 9.89E-010 6.218 secs
12 LieTransPolyLayer 2.65E-015 1.05E-014 3.21E-013 6.329 secs
16 LieTransPolyLayer 1.98E-015 1.56E-014 4.93E-013 6.171 secs
20 LieTransPolyLayer 1.98E-015 1.56E-014 4.93E-013 6.367 secs

through the exact FODO tracking for particle clouds sampled
from U(−0.04, 0.04).

Figure 2: Learning process for the QF and QD Hamiltonian
coefficients in the FODO lattice. LieTransLayer with trun-
cation order 12, RMSE as loss function, Adam as optimizer,
ca. 12 ms per learning step.

Notice that the loss function compares the tracked parti-
cles only at the end of the FODO lattice. It means that
our model is able to properly capture the intermediate
quadrupole behaviour and converge to the theoretical QF
and QD Hamiltonian coefficients w.r.t. our FODO parame-
ters

QF: 0.4𝑥2 − 0.4𝑦2 + 0.5𝑝2
𝑥 + 0.5𝑝2

𝑦 + 0.5𝑝2
𝑧

QD: −0.285𝑥2 + 0.285𝑦2 + 0.5𝑝2
𝑥 + 0.5𝑝2

𝑦 + 0.5𝑝2
𝑧

just observing the final state of the particle cloud after the
five FODO elements.

CONCLUSION AND OUTLOOK
In this article we have presented a novel approach of en-

coding Lie transformations as computational graphs in Ten-
sorFlow. On the example of the FODO cell we showed the
flexibility and modularity of our approach. The results seem
promising albeit we slightly violate the symplectic condition.
The authors are currently investigating possible approaches
for endowing the Lie layers with an inherent symplectic
structure. Lastly, we also demonstrate the benefit of extract-
ing Hamiltonian coefficients from data. We hope this will
allow us to determine dominant non-linear terms for actual
storage rings and thus provide an essential tool in non-linear
beam dynamics.

REFERENCES
[1] S. N. Andrianov et al., “A role of symbolic computations in

beam physics”, in Int. Workshop on Computer Algebra in Sci-
entific Computing (CASC 2010), Tsakhkadzor, Armenia, 2010,
pp. 19-30. doi:10.1007/978-3-642-15274-0_3

[2] A. Ivanov et al., “Physics-based deep neural networks for beam
dynamics in charged particle accelerator”, Phys. Rev. Accel.
Beams, vol. 23, no. 7, p. 074601, Jul. 2020. doi:10.1103/
PhysRevAccelBeams.23.074601

[3] TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, https://www.tensorflow.org/

[4] Keras, https://keras.io

[5] A.J. Dragt et al., Lie methods for nonlinear dynamics with
applications to accelerator physics, 2011.

[6] A.J. Dragt, “Lectures on nonlinear orbit dynamics”, AIP
Conference Proceedings, vol. 87, pp. 147-313, 1982. doi:
10.1063/1.33615

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-TUPAB215

TUPAB215C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1922

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

