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Abstract 
Beam matching is a common technique that is routinely 

employed in accelerator design to minimize beam losses. 
Despite being widely used, a full theoretical understanding 
of beam matching in 6D phase space remains elusive. Here, 
we present an analytical treatment of 6D beam matching of 
a high-intensity beam onto an RF structure. We begin our 
analysis within the framework of a linear model, and apply 
the averaging method to attain a matched solution for a set 
of bunched beam envelope equations. We then consider the 
nonlinear regime, where the beam size is comparable with 
the separatrix size. Starting with a Hamiltonian analysis in 
6D phase space, we attain a self-consistent beam profile 
and show that it is significantly different from the com-
monly used ellipsoidal shape. Subsequently, we analyze 
the special case of equilibrium with equal space charge de-
pression between all degrees of freedom. A comparison of 
beam dynamics for equipartitioned, equal space charge de-
pression, and equal emittances beams is given. 

BEAM ENVELOPES 
Beam matching is attributed to finding a periodic solu-

tion for beam envelopes in periodic accelerator structures. 
Within the framework of the averaging method, transverse 
envelopes of matched beam in a quadrupole focusing ac-
celerator structure can be written as 
 

Rx(z)  R[1max sin(2 z
S

)],                  (1) 

Ry(z)  R[1max sin(2 z
S

)],                (2) 
 

where R is the averaged transverse beam envelope, S is 
the focusing period and max  is the ripple factor defined by 
specifics of focusing structure. Averaged transverse and 
longitudinal beam envelopes are determined from the set 
of matched envelope equations for uniformly charged el-
lipsoid: 
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where  ,  z are the 5-rms transverse and longitudinal nor-
malized beam emittances,   and  are beam velocity and 

energy, I  is the beam current, I c  4 omc
3 / q is the 

characteristic beam current, m and q are the mass and 

charge of particles,   is the RF wavelength, Mz  is the 

ellipsoid coefficient, s  o 1 oz
2 / (2o

2 )  is the phase 
advance of transverse oscillations of a synchronous particle 
at the period of focusing structure S in presence of an RF 
field, o  and oz are the phase advances of transverse and 
longitudinal oscillations per focusing period, respectively. 
The solution for the transverse equilibrium beam size, R, 
depends on longitudinal equilibrium beam size, Rz , and 
the solution for Rz  in turn depends on R. Equations (3) 
and (4) can be re-written as    tR

2 /S, 
 z  

3zRz
2 /S, where depressed transverse, t , and de-

pressed longitudinal, z , phase advances per focusing pe-
riod are: 
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  3I  / (4cR2Rz)is the space charge density of the el-
lipsoidal bunch, and c  I c 

2 3 / (4cS2 ) is the charac-
teristic space charge density. 

6D BEAM MATCHING 
The equilibrium beam sizes are determined from simul-

taneous solution of Eqs. (3) and (4), which can be presented 
as 
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where we have introduced equilibrium beam sizes with 
vanishing current I  0  
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 S
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 3 oz
,  (7) 

 
and transverse, bt , and longitudinal, bz , space charge pa-
rameters 

bt 
3
2

I
I c 

(Rot


)2 ( 
2Rz

)(1Mz),                (8) 

bz  3 3Mz

I
Ic

Roz
3

R2 z
2 .                  (9) 

Equation (6) for transverse beam size is satisfied by 

R Rot bt  1 bt
2 . Together, Eqs. (6), and (7), and (8), 

and (9) determine matched beam sizes R, Rz  through 
given normalized beam emittances,  ,  z, beam current I ____________________________________________ 

* Work supported by US DOE under contract 89233218CNA000001 
† batygin@lanl.gov 

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-TUPAB206

MC5: Beam Dynamics and EM Fields

D08 High Intensity in Linear Accelerators - Space Charge, Halos

TUPAB206

1897

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



, beam momentum   in a linac with wavelength   and 
undepressed phase advances o , oz per focusing period.

Figure 1: Transverse matching of the beam: (left) with neg-
ligible current, (right) with high-current. 

Upon finding equilibrium beam sizes, R, Rz , Eqs. (1) and 
(2) provide matched conditions for oscillating beam enve-
lopes. Let us note, that the solutions to Eq. (6) exist for any
combination of beam and structure parameters as long as
depressed phase advances, Eq. (5), are t  0 ,
z  0 .

Figure 1 illustrates matching of the beam with the accel-
erator when the beam is at the distance of S/4 from the 
middle of the first quadrupole. At this position, the beam 
has equal transverse sizes Rx  Ry  R, with slopes of 
beam envelopes defined as dRx / dz= 2max(R/S), 
dRy / dz= 2max(R/S). Deviation of beam envelopes 
from matched conditions results in un-periodic beam oscil-
lations which manifests in an additional growth of phase 
space occupied by the beam. 

Among the infinitely large number of possible matched 
beam solutions, the system of Eq. (6) has a specific solu-
tion for equilibrium bunch shape [1]: 

Mz 
oz

2

2o
2 , (10) 

when space charge depression of particle oscillations is the 
same in transverse and longitudinal directions: 
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The relationship between ratio of beam emittances and 
that of beam sizes for equal space charge depression beam 
is: 


 z

 ( R
 Rz

)2 1Mz

2Mz


3
2

( R
 Rz

)3/2 1 R
3 Rz

, (12) 

where we used the approximation for an ellipsoidal coeffi-
cientMz  R/ (3 Rz). Figure 2 illustrates the correlation 
between beam radii and beam emittances for beams with 
equal space charge depression, Eq. (12), and that pertaining 
to the well-known equipartitioning condition 

 /  z  R/ ( Rz ) [2]. As can be readily seen in the Fig. 2,
the equal space charge depression condition, Eq. (12), is 
different from the equipartitioning condition, although two 
are close to one-another. 

Figure 2: Ratio of beam emittances versus ratio of beam 
sizes for equipartitioning, equal space charge depression, 
and equal emittances modes. 

SIMULATION OF MATCHED BEAM 
An important advantage of the developed analytical 

framework is that it allows for a meaningful comparison 
between various beam equilibria, and their effects on beam 
phase-space growth. Figure 3 illustrates results of beam dy-
namic study an accelerator with constant value of longitu-
dinal space charge depressed factor z / oz  0.2 and var-
iable transverse space charge depressed factor t / s  for 
equipartitioned, equal space charge depression, and equal 
emittances beams. Figure 3a illustrates relative growth of 
the 6D phase space volume, V6  det , where   is the 
six-dimensional sigma matrix of the beam. As can be seen, 
6D phase space volume growth is correlated with the vari-
ation of transverse space charge depression (see Fig. 3b). 

Phase space growth was approximately constant in case 
of equal space-charge depression, but varied along equi-
partitioning and equal emittances conditions following var-
iation of ratio t / s . The strong space depression ~ 0.2, 
selected for simulations, corresponds to area where reso-
nant islands in stability charts disappear, and emittance 
growth due to “free energy” effect is dominant [3]. Simu-
lations indicate that within the chosen range of parameters, 
minimization of six-dimensional phase space volume 
growth is not related to any specific beam equilibrium, like 
equipartitioning, but is instead related to minimization of 
space charge depression. 

(a)                                        (b) 

Figure 3: (a) growth of six-dimensional phase space, (b) 
transverse space charge depression factor for various 
beam equilibria. 
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Figure 4: Matched self-consistent beam profile for various 
longitudinal beam sizes, 

SELF CONSISTENT BEAM DYNAMICS 
Analysis of beam matching presented above was per-

formed within a linear approximation of particle dynamics 
around a synchronous trajectory with the additional ap-
proximation of beam space charge field corresponding of 
that of a uniformly charged ellipsoid. In Ref. [1], the self-
consistent analysis of high-intensity bunched beam equi-
librium was performed for the case where the beam size is 
limited by the separatrix size. In such a case, linear approx-
imation to particle dynamics is no longer valid. Hamilto-
nian of averaged particle motion in general case is given 
by 

H 
px

2  py
2

2m


p
2

2m 3  qUext  q
Ub

 2 ,   (13) 

where px , px  p  are momentum components of particle, 
oscillating around synchronous particle, Uext is the poten-
tial of external field is and Ub is the space charge poten-
tial [4]. 

The general approach to finding a stationary, self-con-
sistent beam distribution function is to represent it as a 
function of the constant of motion, f  f (H ) , and then to 
solve Poisson's equation for the unknown space charge po-
tential of the beam [4]. In Ref. [1] the self-consistent prob-
lem for a high-brightness beam in an RF field was solved 
assuming 6D beam distribution function is an exponential 
function of the Hamiltonian, f  fo exp(H /H 0 ). In 
particular, it was shown, that, to the first approximation, 
the self-consistent space charge potential of an intense 
beam is opposite to the external potential: 

Ub  
2[1 (t

s
)2 ]Uext .   (14) 

Equation (14) shows that the space charge field of a sta-
tionary bunch compensates for the external field in the 
beam interior. This phenomenon is well-known within the 
context of non-neutral plasma physics as Debye shielding. 
Equation (14) indicates that transverse and longitudinal os-
cillation frequencies in a self-consistent bunch are sup-
pressed by space charge in the same proportion, which cor-
responds to a beam with equal space charge depression. 

Performed analysis results in determination of a self-
consistent bunch shape (see Fig. 4) [5]. It was shown that 

the shape of a matched bunch with constant particle density 
within the bunch is transformed from an ellipsoidal profile 
to a “separatrix”- type shape in real space when longitudi-
nal beam size becomes comparable with separatrix size. 

Figure 5 illustrates dynamics of a beam occupying 80% 
of separatrix, with initial ellipsoidal and self-consisted 
beam profile in a structure with s  30o , oz  29.8o, 
z  16.4o, o  76.7o, t  35.4o. As can be seen, beam
with an initial ellipsoidal shape tends to change its profile 
to self-consisted one, while the shape of the matched beam 
is approximately conserved. Six-dimensional phase space 
volume growth is smaller in case of matched beam profile 
(see Fig. 6). Therefore, self-consistent beam profile pro-
vides additional specification on matched beam conditions 
together with solution of Eq. (6). 

Figure 5: Dynamics of the beam: (left) with initial ellipsoi-
dal shape, (right) with initial self-consistent profile, versus 
number of focusing periods N . 
 

Figure 6: Six-dimensional phase space volume growth of 
the beam: (dotted line) with initial ellipsoidal shape, (solid 
line) with initial self-consistent profile. 
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