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Abstract

The European Spallation Source, currently under con-
struction in Lund, Sweden, will be the world’s most powerful
neutron source. It is driven by a proton linac with a current
of 62.5 mA, 2.86 ms long pulses at 14 Hz. The final section
of its normal-conducting front-end consists of a 39 m long
drift tube linac (DTL) divided into five tanks, designed to ac-
celerate the proton beam from 3.6 MeV to 90 MeV. The high
beam current and power impose challenges to the design
and tuning of the machine and the RF amplitude and phase
have to be set within 1% and 1° of the design values. The
usual method used to define the RF set-point is signature
matching, which can be a time consuming and challenging
process, and new techniques to meet the growing complexity
of accelerator facilities are highly desirable. In this paper we
study the usage of Machine Learning to determine the RF
optimum amplitude and phase. The data from a simulated
phase scan is fed into an artificial neural network in order to
identify the needed changes to achieve the best tuning. Our
test for the ESS DTL1 shows promising results, and further
development of the method will be outlined.

INTRODUCTION

The European Spallation Source (ESS) is a state of the
art neutron science facility under construction in Lund, Swe-
den [1]. The basic process used by the facility is spallation,
wherein one impinges a high neutron material, in this case
Tungsten, with high energy protons, causing the target to
shed excess neutrons. The high energy protons are provided
by the ESS linear accelerator (linac), a 600 m long acceler-
ator consisting of many different sections utilizing varied
accelerator technologies in order to raise the proton energy
from the 75 keV source output to the final 2.0 GeV arriving
on the target. A crucial part of this machine is the 39 m long
drift tube linac (DTL) divided into five tanks, designed to
accelerate the proton beam from 3.6 MeV to 90 MeV. As
the machine is expected to deliver beam of high current and
power, a primary concern is to avoid slow beam losses, as
these lead to radiation activation of surrounding equipment.
In order to avoid such losses, proper and careful tuning of the
RF fields is crucial. As a result the requirement for accuracy
of the RF set point is to be within 1% in RF amplitude and
1° in phase [1]. In order to achieve this type of accuracy,
much work has been performed in the last decades to develop
new techniques to meet the growing scale and complexity
of facilities [2—4]. Within this paper we will investigate how
Machine Learning (ML) may serve this purpose. This paper
presents our current strides in the development of a tuning
technique using ML and a comparison of our current re-
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sults with those of the Signature Matching (SM) technique,
a more established methodology for RF tuning [1-4].

RF PHASE SCAN

In order to be able to quantify how the beam responds
to changes to the RF set-point, a diagnostic sensitive to the
beam time of flight through the cavity must be used. For
those cases a Beam Position Monitor (BPM) can be used. As
the beam passes a BPM, not only is the transverse position
measured, but also the amplitude and phase of the fields ex-
cited by the passing beam on the BPM sensor. Although this
phase alone doesn’t hold much information, by comparing
two BPM phases we can get a fast measurement which is
proportional to the time-of-flight, or looking with respect to
acceleration in a RF cavity, the energy gain between the two
devices. It is important to stress that this measurement is
relative and that extracting the absolute values of the energy
is not an easy task. For this technique, using only the relative
phase changes has proven to be enough.

In order for clear signatures to emerge, it is not uncom-
mon to use subsequent unpowered accelerating structures
as drift space for the beam, and to extract the relative phase
change from BPMs in these locations [2]. It simplifies tun-
ing when the energy is not varying between BPMs, as in a
non-accelerating cavity, but it is not a requirement. Initial
commissioning of the ESS DTL will be done with only the
first DTL tank, and as such it is required to reach the RF field
requirements using only the BPMs inside this tank for tuning.
Thus the relative phase change needed to be extracted from
internal BPM pairs within the accelerating structure for the
results in this article.

The BPMs on this structure are then used to measure the
energy gain (or time-of flight) as a function of the set points
in the accelerating cavity. As the BPM’s measured phase
is closely dependent on the energy of the beam, scanning
RF amplitude and phase in a cavity and plotting out the
resulting phase differences will give rise to different curves
depending on the proximity to the ideal set point for the
cavity. A few of these signature curves can be seen in Fig. 1,
where the ideal set point can be found from the signature
for the ideal amplitude A, = 6.89 kV, the ideal input beam
energy Ey = 3.62 MeV and the -35° offset phase set point.

Much work has been done to find efficient and fast meth-
ods for extracting and identifying this ideal signature.

Simulations

OpenXAL was used to simulate the first tank of the ESS
DTL during acceleration and to reproduce the signals from
the six BPMs [5, 6]. As phase difference is the data of
interest, this results in 15 different BPM combinations, each
producing a phase scan for each amplitude set point of the
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Figure 1: The phase curves for different RF amplitude and
input energy set points. BPM phases simulated as compar-
ison between two BPMs in the first DTL tank in the ESS
linac.

cavity, which was varied in RF amplitude and input beam
energy. Both techniques outlined below require training or
fitting of some type and for this purpose a large data set was
produced for a machine free from errors. This consisted
of 110 different amplitude set points, with a variation of
+5.5% around the design RF cavity amplitude A, and 60
different input beam energy set points, with a variation of
+1.5% around the design input energy E. Each phase scan
consisted of 55 phase points, spread evenly around the -35°
set point.

To this perfect machine four different types of errors were
then applied. BPM longitudinal position within the ma-
chine was adjusted, potentially caused by installation and
construction, as well as the phase readout from these BPMs,
produced by electronic limitations. There are also errors
arising from production limitations when constructing the
cavities. Such limitations could give rise to errors in both
RF amplitude and phase gap-to-gap. The different types of
errors and their magnitudes are summarized in Table 1.

Table 1: The Different Types of Errors Used in Simulations
and Their Corresponding Magnitude

Error Type Magnitude

BPM As + 100 um

BPM A¢ +1°

RF Amplitude +2%

RF Phase +0.5°
SIGNATURE MATCHING

One method, which is widely used [2—4], is to use a set
of simulated data (like the ones shown in Fig. 1) and fit each
phase scan set with RF amplitude A and input beam energy
€ with a polynomial

f(@p,Aje) =ap(A,e) +a1(A,e)p + ... +a,(A e)p™ (1)

and at this point we assume that an error in the input phase
of the cavity acts as a simple offset on the variable ¢ of the
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whole curve. As a result from all the fittings, it is possible
to construct a surface a, (A, €) for each coefficient of the
fitted polynomial. This surface can then be approximated by
another 2D polynomial surface so that we have a continuum
of coefficients for any given set-point in (A, €).

With the parameters obtained from the fits described
above, it is possible to investigate the variance, y2, between
the simulated model and the corresponding measured data.
This variance is defined as

(g - donAse) -

2 W))?
X (¢07A’E) = N

J

@)

wherein fis our fit to the model prediction of the BPM phase
difference (Eq. (1)) and W; is the measured BPM phase
difference at some unknown RF phase, RF amplitude and
incoming beam energy. One then optimizes the values of ¢,
A and e to minimize Eq. (2), thus determining to which set-
point the signature curve W; corresponds to. This method is
known as Signature Matching [2—4].

MACHINE LEARNING

Machine learning is a term used to describe a specific
field of modern computer algorithms capable of learning
from experience. Most often, the algorithm refers to a neural
network, a network of individual artificial neurons, wherein
the weighted connections between the neurons can be trained
to reach an ideal output. This training can be performed in
different ways, but the most relevant to this project is the
technique of supervised learning. Machine learning algo-
rithms come in many forms and can solve many distinct
problems using varying network structures, definitions of
loss and optimization algorithms. The problem we are look-
ing at in this project involves reducing larger scans of data
down to three dependent variables, RF amplitude, RF phase
and input beam energy. This leads us to the use of a network
and loss function fitting for linear regression. This network
is trained using a mean squared error function as loss, and
the ADAM optimization algorithm [7, 8].

This network was defined using the python library Keras.
The library comes with predefined versions of our loss func-
tion, mean squared error, and our optimization algorithm,
ADAM. ADAM has different coefficients which may be
tuned to improve the networks performance, although the
learning rate is most relevant. Optimization of the network
structure and training parameters was done iteratively, look-
ing at generalized performance as the figure of merit. This
was quantified as the loss on a subset of data separated dur-
ing training. Through this process we arrived at a 10-layer
structure with 80 neurons in each layer, and a final output
layer of three neurons. This was trained for 20 000 epochs
with a learning rate of 0.00001. This network was used to
produce the results presented in the following section [8,9].

RESULTS

Figure 2 shows the results for both methods when attempt-
ing to produce the correct set point in amplitude. The x-axis
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Table 2: Difference between the Predicted and Expected Value for the RF Amplitude and Phase and the Input Energy
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Data Set oal%l 041 opl%]  pal%] gy 1 pg [%]

No Errors ML  0.013 0.000 0.006 0.001 0.000 0.002
SM  0.181 0.154 0.037 0.008 0.001 0.001

All Errors ML  0.605 0.002 0.510 0.022 0.000 0.013
SM  0.293 0.557 0.152 -0.004  0.010 0.001
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Figure 2: The predicted RF amplitude set points from both methods plotted against the correct amplitudes, along with a

slope one line and 1% limits.

represents the correct set points and the y-axis the predic-
tions of the methods. The blue line in Fig. 2 is a slope 1 line
which then represents the perfect prediction, and the two
green lines represent the +1% band lines, the minimum am-
plitude accuracy required for the ESS cavities. Here we can
see the spread around the ideal predictions visually, though
it is numerically summarized in Table 2.

Table 2 shows the standard deviation (o) and the mean
(p) of the difference between the predicted and expected
value for the RF Amplitude (A) and phase (¢), as well as
for the input energy (E). The low mean in all rows shows
there is little to no systematic offset to the predictions. We
see higher accuracy from ML on the training set. If we look
at the results with all errors present we see SM performing
better on amplitude and energy, while ML performs much
better on the phase prediction. It should be noted that the
SM predictions take 60 times as long to be calculated as
the comparable ML results. Due to the BPM data being
extracted from an accelerating cavity, SM is also quite sen-
sitive to which BPM combination is used as input. For the
results presented here, the three best combinations (BPM3-
BPM1, BPM4-BPM?2 and BPM4-BPM3, indexed in order
of longitudinal placement) were chosen and averaged.
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OUTLOOK

We have managed to produce promising results with a
somewhat rudimentary neural network and short training.
This suggests that the problem of RF tuning, even with the
limitation of using internal BPMs within the accelerating
structure, is solvable using ML. In the near future this project
will move on to constructing and training more complex
neural networks, expanding the scope to include the rest of
the DTL, and possibly importing data from other facilities
to test this new methodology on real data. The possibility
of a hybrid method has also been discussed, using ML to
perform the fitting required for SM. This could potentially
conserve the advantages of both methods while avoiding
their respective drawbacks.

ACKNOWLEDGEMENTS

This study has only been possible with the help of the
entire Beam Physics team at ESS, as well as that of other
teams at the facility.

MC4: Hadron Accelerators
A14 Neutron Spallation Facilities



12th Int. Particle Acc. Conf.
ISBN: 978-3-95450-214-1

(1]

[2]

[3]

(4]

ISSN: 2673-5490

REFERENCES

R. Garoby et al., “The European Spallation Source Design”,
Physica Scripta, vol. 93, p. 014001, 2018. doi:10.1088/
1402-4896/aa9%bff

G. Shen and M. Ikegami, “Tuning of RF amplitude and phase
for the drift tube linac in J-PARC”, Chin. Phys C, vol. 33,
p-577,2009. doi:10.1088/1674-1137/33/7/014

T. L. Owens, K. L. Junck, T. Kroc, E. S. McCrory, and M.
Popovicacute, “Phase Scan Signature Matching for Linac
Tuning”, in Proc. 1994 Linear Accelerator Conf. (LINAC’94),
Tsukuba, Japan, Aug. 1994, paper TH-80, pp. 893-895.

G. B. Shen, H. Sako, and S. Sato, “RF Amplitude and Phase
Tuning of J-PARC SDTL”, in Proc. 22nd Particle Accelerator
Conf. (PAC’07), Albuquerque, NM, USA, Jun. 2007, paper
TUPANO062, pp. 1529-1531.

MC4: Hadron Accelerators

A14 Neutron Spallation Facilities

IPAC2021, Campinas, SP, Brazil

(5]

(6]

(7]

(8]

(9]

JACoW Publishing
doi:10.18429/JACoW-IPAC2021-TUPAB198

J. Galambos, A. V. Aleksandrov, C. Deibele, and S. Hender-
son, “PASTA An RF Phase and Amplitude Scan and Tun-
ing Application”, in Proc. 21st Particle Accelerator Conf.

(PAC’05), Knoxville, TN, USA, May 2005, paper FPATO016,
pp. 1529-1531.

OpenXAL, https://openxal.github.io/.

A. Edelen et al., “Opportunities in Machine Learning for
Particle Accelerators”, 2018. arXiv:1811.03172

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization”, 2017. arXiv:1412.6980

Keras, https://keras.io

TUPAB198

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2021). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

@

1875 @



