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Abstract

Several different approach are employed to identify the
abnormal events in some Advanced Photon Source (APS)
operation archived dataset, where dimensionality reduction
are performed by either principal component analysis or au-
toencoder artificial neural network. It is observed that the
APS stored beam dump event, which is triggered by mag-
net power supply fault, may be predicted by analyzing the
magnets capacitor temperatures dataset. There is reasonable
agreement among two principal component analysis based
approaches and the autoencoder artificial neural network
approach, on predicting future overall system fault which
may result in a stored beam dump in the APS storage ring.

OVERVIEW

Anomaly detection is the operations to identify the ab-
normal events or the outliers from some unlabeled dataset,
which is widely employed in the predictive condition moni-
toring of complex operating systems. Examples of anomaly
detection include bank fraud detections system, spam emails
filtering, and operating machine fault monitoring system.
For the health monitoring of such complex systems, usually
there are huge number of different sensors installed, which
are employed to monitor the operating conditions of differ-
ent sub-systems. To collectively analyze the data which are
collected by these sensors, it may be preferred to perform
dimensionality reduction on the raw sensors data, as most
likely only the most critical extracted features may be rel-
evant. There are two popular approach of dimensionality
reduction, principal component analysis (PCA) and autoen-
coder artificial neural network, which will be employed and
discussed in the following sections of the paper.

The Advanced Photon Source storage ring light source
is a third generation light source starting operation in the
1990s [1]. Occasionally there is stored beam dump resulted
from APS technical systems failures, which introduces op-
eration interruptions for the photon users. Among these
technical systems, the power supply data of all the magnets
are proposed to be analyzed [2]. The magnet current and
temperatures data are collected on all the major magnets in
the APS storage ring, including steering dipole correctors,
quadrupole magnets, and sextupole magnets. Some samples
on normalized data of these magnets are shown in Fig. 1,
where there is an event for magnet power supply fault and
APS stored beam dump.
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Figure 1: Magnets temperature data from APS operation
archive, the beam dump occurring near samples index of
3000.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) technique is usually
employed to linearly transform a high dimensional data into
a low dimensional one, where most of the variance in the
original dataset is preserved by the principal components.
Hence it is expected that the most critical features in the
original dataset would be preserved in the PCA transformed
new dataset. By employing two principal components, and
applying principal component analysis fit and transforma-
tion [3] operations on the APS magnets capacitor temper-
atures dataset, a new dataset is generated and analyzed by
Gaussian kernel density estimation, as shown in Fig. 2. It is
observed that there are one main nominal cluster and several
outlier clusters. For the next steps of analysis, five principle
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Figure 2: Gaussian kernel density estimation of the two prin-
cipal components from the PCA transformation, showing
the main nominal cluster and several outlier clusters.
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components are preserved in the PCA process. The five by
five covariance matrix [4] of the PCA tranformed training
dataset is shown in Fig. 3.
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Figure 3: Five by five covariance matrix of the PCA tran-

formed training dataset, showing correlations among the five
preserved principal components by the PCA process.

KERNEL DENSITY ESTIMATION

Kernel density estimation is one way to post-process the
principal components dataset. The idea is that the dataset for
normal operations of the complex system would follow some
arbitrary distribution, and it may be possible to describe this
distribution by employing kernel density estimation. The
samples in the test dataset are then evaluated on the acquired
probability density function. In case that lower probability
is observed for extended time, it may indicates that some
systems fault is approaching. Kernel density estimation [5]
are performed on the five principle components of mag-
net capacitor temperatures data. As shown in Fig. 4, the
probability density distribution of the probability density in
training dataset follows some arbitrary distribution, which is
calculated by the kernel density estimation. The APS stored
beam current is plotted alongside the probability density
estimation of training and test datasets, as shown in Fig. 5.
When the probability density is decreasing below the alarm
threshold, which is determined by the training dataset, the
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Figure 4: Probability density distribution of the probability
density as evaluated by the Gaussian kernel density estima-
tion on the principal components.
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Figure 5: Top: APS stored beam current dropping to zero
at the point of magnet trip and stored beam dump. Bottom:
the probability density from the Gaussian kernel density
estimation, for training, validation and test datasets. Red
dashed line denotes the alarm threshold determined by the
training dataset.

APS storage ring is approaching a fault event of stored beam
dump.

MAHALANOBIS DISTANCE

The mahalanobis distance MD(x;, X,) from one sample x;
to the centroid x of all the samples is defined as a generaliza-
tion of the Euclidean distance, which can be calculated using
the inverse of the covariance matrix M, of the principal
components X.

MD(Xi,Xo) = J(Xi — Xo)T . MEOIV . (Xi — Xo) (1)
where Mg}, denotes the inverse matrix of the covariance
matrix.

Shown in Fig. 6 is the probability density distribution of
the mahalanobis distance to the centroid in the principal
components basis space, which is calculated for the test
dataset.
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Figure 6: Probability density distribution of the mahalanobis
distance to the centroid in the principal components basis
space, for the test dataset.
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The calculated mahalanobis distance for all the datasets in
the principal components basis is shown in Fig. 7 alongside
the APS stored beam current, where the alarm threshold
is determined by the mahalanobis distance of the training
dataset. It is observed that the mahalanobis distance goes
above the alarm threshold when the APS storage ring is
approaching an anomaly condition, which is a stored beam
dump from magnet fault. The mahalanobis distance reaches
its maximum around the stored beam dump event, and slowly
recovers to normal value afterwards.
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Figure 7: Top: APS stored beam current drops to zero at
the point of magnet trip and beam dump. Bottom: the ma-
halanobis distance to the centroid in the principal compo-
nents space, for training/validation and test datasets. Red
dashed line denotes the alarm threshold determined by train-
ing dataset.

AUTOENCODER

Autoencoder neural network is a special category in the
family of artificial neural networks, which is usually em-
ployed as an unsupervised learning approach for dimension
reduction and exceptions detection. As shown by an ar-
chitecture sketch in Fig. 8, autoencoder neural network is
composed of an encoder part and a decoder part, which
are arranged in a symmetric way. Compared with PCA,
autoencoder neural network may perform nonlinear trans-
formations in addition to the linear transformations. The
autoencoder neural network is trained on the training and val-
idation datasets which are same as used in the PCA process.
The reconstruction loss of mean squared errors is calculated
on the training, validation and test datasets.

Comparing Fig. 9 with Figs. 5 and 7, it is observed that the
reconstruction loss of autoencoder neural network follows a
similar path as the probability density and the mahalanobis
distance from the previous two PCA approaches. It seems
that all these three approaches may identify abnormal condi-
tions and possibly predict a future fault of the overall system.
By analysis on other datasets, it is also observed that the
reconstruction loss may show different pattern, when the
stored beam dump is introduced by power supply fault of
different magnet type.
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Figure 8: An example for autoencoder neural network archi-
tecture. The middle hidden layer represents the latent space
with two latent variables.
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Figure 9: Top: stored beam current dropping to zero at the
point of magnet trip and stored beam dump. Bottom: the
reconstruction loss as mean squared errors of autoencoder
neural network, for training, validation and test datasets. Red
dashed line denotes the alarm threshold.
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