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Abstract
The Large Hadron Collider (LHC) at CERN and its

planned luminosity upgrade, the High Luminosity LHC (HL-
LHC) demand well-controlled on- and off-momentum optics.
Optics measurements are performed by analysing Turn-by-
Turn (TbT) data of excited beams. Different techniques to
measure the momentum compaction factor from these data
are explored, taking into account the possibility to combine
them with RF-voltage scans in future experiments.

INTRODUCTION
In circular machines, such as the Large Hadron Collider

(LHC) [1] at CERN, particles with a momentum offset with
respect to the reference momentum Δ𝑝/𝑝 = 𝛿𝑝 experience
a different path length and hence a change of circumference
with respect to on-momentum Δ𝐶/𝐶. This relation is de-
scribed by the momentum compaction factor 𝛼𝐶 by

𝛼𝐶 = Δ𝐶/𝐶
𝛿𝑝

= 𝐼1
𝐶 = 1

𝐶 ∮ 𝜂𝑥
𝜌 d𝑠, (1)

with the horizontal dispersion 𝜂𝑥 and the bending radius 𝜌.
𝐼1 is the first synchrotron radiation integral. 𝛼𝐶 enters in
all momentum-dependent measurements such as dispersion
or chromaticity and links transverse with longitudinal dy-
namics. In a perfect and flat machine 𝛼𝐶 is given by the
dispersion in the bending magnets, which itself is defined by
quadrupole strengths. In the LHC 𝛼𝐶 is typically between
3.2×10−4 and 3.5×10−4. The phase slip factor 𝜂𝐶 is defined
with the relativistic gamma, 𝛾rel, as 𝜂𝐶 = 𝛾−2

rel − 𝛼𝐶.
𝛼𝐶 and 𝜂𝐶 themselves depend also on 𝛿𝑝, and hence it

follows

𝛼𝐶 = ∑
𝑖≥1

𝛼(𝑖)
𝐶 𝛿𝑖−1

𝑝 and 𝜂𝐶 = ∑
𝑖≥1

𝜂(𝑖)
𝐶 𝛿𝑖−1

𝑝 , (2)

where the terms with 𝑖 = 1 refer to the linear momentum
compaction factor and the linear phase slip factor. The
second-order momentum compaction factor, 𝛼(2)

𝑐 can be
calculated by [2, 3]

𝛼(2)
𝐶 = 1

𝐶 ∮ (𝜂′
𝑥

2 + 𝜂(2)
𝑥
𝜌 ) d𝑠, (3)

where 𝜂′
𝑥 = d𝜂𝑥/d𝑠. Although linear dispersion is measured

routinely, the second-order dispersion 𝜂(2)
𝑥 has recently been

measured for the first time for several optics in the LHC [4].
𝛼(2)

𝐶 can be controlled by sextupoles and can lead to an asym-
metric momentum acceptance. In lepton machines such as
in the FCC-ee [5] the design features such an asymmetric
∗ jacqueline.keintzel@cern.ch

momentum acceptance to account for the losses due to strong
synchrotron radiation. In addition to a reduced momentum
aperture, higher-order terms of the momentum compaction
factor become more dominant for smaller 𝛼(1)

𝐶 and can lead
to smaller bucket sizes and enhancement of head-tail insta-
bility, where a detailed study can be found in [6, 7]. As 𝛼(2)

𝐶
is generated by sextupoles, it is introduced by correcting the
natural chromaticity. 𝛼(2)

𝐶 hence depends on the horizontal
tune 𝑄𝑥 and chromaticity 𝑄′

𝑥 = d𝑄𝑥/d𝛿𝑝 by [8]

𝛼(2)
𝐶 = 1 − 2𝑄′

𝑥𝑄𝑥 − 𝑄2
𝑥

𝑄4
𝑥

. (4)

𝛼(2)
𝐶 decreases for increasing 𝑄𝑥 and therefore with increas-

ing machine circumference. For example, in the LHC 𝛼(2)
𝐶

is approximately −3 × 10−4, using Eq. (4), 𝑄𝑥 = 62.31 and
𝑄′ = 2. From Eq. (2) it follows that its contribution to the
total momentum compaction factor is negligible, as the max-
imum momentum acceptance is about 6 × 10−4 [1]. Effects
from second-order momentum compaction are therefore
more dominant in machines where the natural tune is close to
the matched chromaticity. The third order-momentum com-
paction factor, 𝛼(3)

𝐶 , is generated by, and can be controlled
with octupoles. Recent studies showed that the momentum
aperture can be symmetrically increased by optimizing oc-
tupole settings [3].

In the following different techniques to retrieve the mo-
mentum compaction factor, either from measurements of
the transverse optics or the longitudinal one, are explored
for several LHC optics of Run 2, together with prospects for
future measurements.

TRANSVERSE OPTICS MEASUREMENTS
In the LHC optics of the horizontal and vertical plane

are measured using Turn-by-Turn (TbT) beam position data.
TbT measurements demand beam excitation, which can be
performed with an AC-dipole [9]. Turn-by-Turn (TbT) orbit
data is acquired at each Beam Position Monitor (BPM) [10]
in SDDS [11] format. After data cleaning with algorithms
based on SVD [12], harmonics analysis is performed with
codes like HARPY [13,14], where the output includes the
measured closed orbit (𝐶𝑂) at each BPM. Together with the
MAD-X [15] model horizontal dispersion 𝜂mdl

𝑥 the relative
momentum offset 𝛿𝑝 is typically calculated, using only arc
BPMs, by

𝛿𝑝 = ⟨𝜂mdl
𝑥 𝐶𝑂𝑥⟩

⟨(𝜂mdl
𝑥 )2⟩

. (5)

For off-momentum measurements 𝛿𝑝 are obtained for var-
ious relative frequency shifts. 𝜂𝑥 is then retrieved from a
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linear fit of 𝐶𝑂𝑥 over various 𝛿𝑝 at each BPM. It has to
be noted that effects from second-order dispersion [4] are
not included in Eq. (5). Optics measurements at 7 different
fills at 6.5 TeV from 2016 and 2018 are used for the studies
presented here, where more details on optics settings can
be found in [4]. Optics measurements using TbT data de-
pend on the model used and therefore the model momentum
compaction factor enters indirectly in all obtained results.

Error Sources and Limitation
The calculation of 𝛿𝑝 relies on the model dispersion and

the measured closed orbit. Great emphasis is therefore put
into finding correct knob settings to reproduce measured
crossing angles and beam separation in the model.

The measured closed orbit, however, is spoiled by BPM
calibration errors. These can be estimated by comparing
calibration independent optics measurements (𝛽 from phase
advance [16, 17], normalised dispersion (𝜂/√𝛽) [18]) with
calibration dependent results (𝛽 from amplitude [19], dis-
persion). In recent studies [20, 21] an average calibration
error in the BPMs close to the interaction point of about 3 %
with respect to the average calibration has been measured,
where it has also been assumed that such uncertainties are
not present in the arc BPMs.

As 𝛼(1)
𝐶 depends on the quadrupole strengths, it is also

affected by quadrupolar errors in the lattice, Δ𝐾1, which
lead to a momentum compaction factor shift, of Δ𝛼𝐶 =
−Δ𝐾1(𝜂2

𝑥 − 𝜂2
𝑦)/𝐶 [7], with the vertical dispersion 𝜂𝑦. As

𝜂2
𝑦 ≪ 𝜂2

𝑥 quadrupole errors at locations with large 𝜂𝑥 are
the main contributor to a change of the momentum com-
paction factor. As the linear momentum compaction de-
pends in first order only on quadrupole fields in the machine,
known normal and skew-quadrupole errors from 60 WISE
tables [22, 23] are included in the bending dipoles, leading
to 60 different machines. Before matching the tune and
chromaticity to the measured values, corrections for the
quadrupole errors are applied and the coupling is corrected
using the closest tune approach. The rms 𝛽-beating with
respect to the error free model results in approximately 2 %
for analyzed optics. The resulting momentum compaction
factor, 𝛼mdl+Δ𝐾1

𝐶 , changes by less than 1 % with respect to
the perfect model and is given in Table 1, where the errors
represents the standard deviation over 60 seeds.

Beam Energy over Frequency
In synchrotrons devices such as a magnetic probe or a

spectrometer can be installed to determine the beam energy,
which is then used to evaluate the momentum compaction
factor [24–26] at different RF-frequencies, which can be
measured with great precision. In the LHC, however, no
such device is presently installed, where recent investiga-
tions show the possibility to extract the beam energy from
proton-ion operations [27]. The relative beam energy be-
tween different RF settings is equal to the relative momentum
difference, computed from on- and off-momentum TbT mea-
surements using Eq. (5). The momentum compaction factor

can then be measured using the relative frequency change,
Δ𝑓 /𝑓, for various 𝛿𝑝 by

𝛿𝑝 = − ( 1
𝛾−2

rel + 𝛼𝐶
) Δ𝑓

𝑓 . (6)

As 𝛾−2
rel ≈ 10−8 for collision energy of 6.5 TeV it is negligi-

ble. As expected, a linear dependence of 𝛿𝑝 over Δ𝑓 /𝑓 is
found, where an example is shown in Fig. 1 for an ATS [28]
optics measurement. The relative difference between mea-
sured momentum compaction factors, 𝜎fit, and the model
ones, which includes known quadrupole errors, 𝛼mdl+Δ𝐾1

𝐶
for all analyzed measurements is about (−2.95 ± 0.003) %,
obtained by a least-square fit as shown in Fig. 2. Contrarily
to previous studies [20, 21] the measured error of −3 % is
therefore attributed to calibration errors in arc BPMs. Re-
sults for measured 𝛼fit

𝐶 and resulting 𝜎fit are summarized in
Table 1.

Figure 1: Relative momentum offset 𝛿𝑝 for relative change
of RF-frequencies Δ𝑓 for an ATS proton optics, obtained at
3rd October 2016.

Figure 2: Measured momentum compaction factor obtained
from fit, 𝛼fit

𝐶 , over model momentum compaction factor in-
cluding known qadrupole errors, 𝛼mdl+Δ𝐾1

𝐶 .

Approximation with Dispersion
𝐼1 from Eq. (1) is only non zero in the bending dipoles.

With measurements, however, the optics is only retrieved
at the BPMs, where 𝐼1 = 0. An approximation of 𝐼1 can
therefore be defined as 𝐼1 = ∮ 𝜂𝑥

𝜌 d𝑠 ≈ ⟨𝜂𝑥⟩2𝜋, where ⟨𝜂𝑥⟩
refers to the average measured dispersion in the BPMs. The
approximation of the momentum compaction factor, 𝛼ap.

𝐶 ,
therefore reads

𝛼𝐶 ≈ 𝛼ap.
𝐶 = 2𝜋⟨𝜂𝑥⟩

𝐶 . (7)

By using this approximation a systematic error between
𝛼𝐶 and 𝛼ap.

𝐶 is introduced. The relative difference between
the ideal model value, 𝛼mdl

𝐶 , and the approximation used
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Table 1: Model and Measured Momentum Compaction Factors for Different Optics. All momentum compaction factors are
given in 10−4. 𝛼mdl

𝐶 : Ideal model. 𝛼mdl+Δ𝐾1
𝐶 : Model including known quadrupole errors. 𝛼mdl+Δ𝐾,ap.

𝐶 : Model approximation
using Eq. (7). 𝛼fit

𝐶 : Measurement using fit of 𝛿𝑝 over Δ𝑓 /𝑓. 𝜎fit: Relative error between 𝛼fit
𝐶 and 𝛼mdl+Δ𝐾1

𝐶 . 𝛼ap.
𝐶 : Measured

approximation using Eq. (7). 𝜎ap: Relative error between 𝛼ap.
𝐶 and 𝛼mdl+Δ𝐾,ap.

𝐶 . More information regarding measurement
settings can be found in [4].

Date Type 𝛽∗ [m] Model Measurements
𝛼mdl

𝐶 𝛼mdl+Δ𝐾1
𝐶 𝛼mdl+Δ𝐾,ap.

𝐶 𝛼fit
𝐶 𝜎fit [%] 𝛼ap.

𝐶 𝜎ap. [%]

26/03/16 physics 11 3.22 3.22 ± 0.001 3.28 ± 0.008 3.08 ± 0.001 -4.4 3.28 0.01
05/10/16 VdM 19.2 3.20 3.21 ± 0.008 3.26 ± 0.002 3.11 ± 0.010 -3.0 3.28 0.6
06/16/16 high 𝛽∗ 2500 3.18 3.20 ± 0.001 3.26 ± 0.001 3.11 ± 0.001 -2.8 3.26 0.1
28/07/16 ATS 0.4 3.49 3.48 ± 0.003 3.51 ± 0.002 3.38 ± 0.001 -2.8 3.51 -0.3
03/10/16 ATS 0.21 3.49 3.50 ± 0.004 3.56 ± 0.003 3.39 ± 0.003 -3.1 3.57 0.1
16/10/16 ions 0.6 3.21 3.23 ± 0.002 3.29 ± 0.002 3.17 ± 0.005 -1.8 3.32 +1.4
03/11/18 ions 0.5 3.49 3.49 ± 0.003 3.54 ± 0.004 3.39 ± 0.002 -2.8 3.53 -0.4

in Eq. (7) and including errors, 𝛼mdl+Δ𝐾,ap.
𝐶 , is about +2 %,

using only BPMs, which have not been cleaned in the dis-
persion measurement. Obtained measurement results from
Eq. (7), 𝛼ap.

𝐶 , agree with the model expectation for analyzed
samples with a relative difference, 𝜎ap., typically below 1 %.
This method can therefore neither be used to retrieve informa-
tion about BPM calibration, nor the momentum compaction
factor in the machine. This small 𝜎ap. can result from not
included field or misalignment errors. A summary of 𝛼ap.

𝐶
and 𝜎ap. for analyzed measurements is also given in Table 1.

MEASUREMENTS FROM
LONGITUDINAL PARAMETERS

Complementary to transverse optics measurements, stud-
ies of longitudinal parameters can be performed to measure
the momentum compaction factor. The phase slip factor can
be measured by fitting the measured synchrotron tune 𝑄𝑠
over various RF-cavity voltages by [29]

𝑄2
𝑠 = ℎ𝜂𝐶𝑞𝑉 cos 𝜑

2𝜋𝛽rel𝑐𝑝 , (8)

with the harmonic number ℎ, the unit charge 𝑞, the syn-
chronous phase angle 𝜑, the relativistic 𝛽rel, the speed of
light 𝑐 and the particle momentum 𝑝. One difficulty in ex-
tracting the momentum compaction factor from RF-voltage
scans in the LHC is that 16 RF-cavities are installed and
the accuracy of determining the total change in 𝑉 needs to
be evaluated. Moreover, the synchronous phase itself also
depends on 𝑉 [29]. In other machines, such as in LEP, 𝛼𝐶
has been measured using this method with a precision better
than 10−3 [30]. Another option envisaged to be performed
in future studies is by using the bunch length 𝜎𝑧, the 𝑄𝑠 and
the rms energy spread 𝜎𝐸 to fit the momentum compaction
factor by

𝜎𝑧 =
𝑐𝜎𝛿(𝛼𝑐 − 𝛾−2

rel )
2𝜋𝑄𝑠𝑓rev

, (9)

with the revolution frequency 𝑓rev. 𝛾−2
rel decreases from about

10−6 to 10−8 from 450 GeV injection energy to 6.5 TeV col-

lision energy. Neglecting this energy dependence therefore
limits the precision of obtained 𝛼𝑐 to 10−5 and 10−7, respec-
tively at injection and collision. Both methods are proposed
to be used int the future for measuring momentum com-
paction.

SUMMARY AND OUTLOOK

Several options to measure the linear momentum com-
paction factor in the LHC have been explored. Transverse
off-momentum optics measurements using TbT beam posi-
tion data can be used to retrieve the momentum compaction
and the BPM calibration by a fit of the relative change in
RF-frequency over the relative momentum offset. By com-
paring measured momentum compaction with the model,
including known quadrupolar errors, a relative error of ap-
proximately 3 % is found, which could result from calibra-
tion errors in arc BPMs. Re-analyzing statistically TbT
measurements of previous runs and performing measure-
ments with a LHC optics, which provides a factor 2 larger
momentum compaction factor [31], could help clarifying
BPM calibration in the LHC. The approximation of the mo-
mentum compaction using the dispersion agrees almost per-
fectly with the model, as information of BPM calibration
is lost due to re-normalization in the analysis process and
is therefore not suitable to identify BPM calibration. As
transverse optics measurements depend on the used model,
future studies to measure the momentum compaction factor
and the phase slip factor from longitudinal parameters can
be performed. Performing RF-voltage scans, envisaged to be
tested in future runs, while measuring the synchrotron tune
and the bunch length would allow to obtain the momentum
compaction factor.
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