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Abstract
Machine learning (ML) is under study for Low-level RF

(LLRF) control systems to keep the voltage and phase of su-
perconducting radio-frequency (SRF) cavities stable within
0.01 degree in phase and 0.01% amplitude as constraints.
Model predictive control (MPC) uses an optimization algo-
rithm offline to minimize a cost function with constraints on
the states and control input. The surrogate model optimally
controls the cavities online. Time series deep ML structures
including recurrent neural network (RNN) and long short-
term memory (LSTM) can model the control input of MPC
and dynamics of LLRF as a surrogate model. When the
predicted states diverge from the measured states more than
a threshold at each time step, the states’ measurements from
the cavity fine-tune the surrogate model with transfer learn-
ing (TL). MPC does the optimization offline again with the
updated surrogate model, and transfer learning fine-tunes the
surrogate model with the new data from the optimal control
inputs. The surrogate model provides us with a computa-
tionally faster and accurate modeling of MPC and LLRF,
which in turn results in a more stable control system.

INTRODUCTION
ML with optimization provides the system and control

with constraints and optimum objective functions. Nonlinear
optimization takes long to perform, and recent advances
have been solving this problem by applied surrogate model
during optimization including Bayesian optimization [1],
surrogate modeling for data-driven optimization [2], and
surrogate modelling on the data from the optimization [3].
These ML methods have been implemented in the attitude
control of spacecraft, where a ML based surrogate model
can learn the entire optimal attitude control system with the
optimal configuration of spacecraft [4], the entire optimal
control of spacecraft for the landing problem [5], the optimal
controllers’ parameters of spacecraft [6–8]. In a similar way,
ML based controllers including surrogate models have been
implemented in particle accelerators [3, 9–12].

MPC is used for both linear and nonlinear systems. The
optimization in MPC satisfies the constraints and minimises
the cost function. For linear systems, the optimization is

convex and has one local optimum. In nonlinear systems,
the optimization is non-convex and the optimization has to
find the global optimum. MPC provides us with an optimal
control with the cost of great amount of computation due
to the non-convex optimization with constraints. With the
recent advances in computation resources, including high
performance computing (HPC), MPC can be done offline and
implemented online with a time series ML-based surrogate
model. Linear and nonlinear MPC controls have been widely
used in spacecraft [4,13] and particle accelerators [9]. RNN
and LSTM deep learning can learn the time series data from
MPC [4,14].

Simulations of particle accelerators are essential for de-
signing and analysing the optimal particle accelerator config-
urations, including the LLRF. High fidelity simulations may
be computationally expensive, spanning over a few hours;
and obtaining beam time for experiments is limited [10].
Surrogate model can learn the simulation data set, and fine-
tune the surrogate model with TL [15]. Transfer learning in
ML is transferring knowledge from one domain to another
related domain. In deep learning neural networks (DL), first
DL is trained on one data set, and next, the trained DL is
retrained on the target data set.

LOW LEVEL RF MODEL
A nonlinear model of an SRF cavity and the LLRF feed-

back loop was developed by the LNBL LLRF team. For each
cavity with multiple electromagnetic modes, each mode is
given by a resonant circuit model, see Fig. 1.

Figure 1: Circuit model of a resonant mode in a cavity [16].
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The electrodynamics equations of the system are given
in [16]. The states of LLRF 𝑥𝑥𝑥 are voltage and phase with
control input signal 𝑢𝑢𝑢. The state-space equation is defined
as ̇𝑥𝑥𝑥 = 𝑓 (𝑥𝑥𝑥(𝑡), 𝑢𝑢𝑢(𝑡)). State measurements are represented as
̃𝑥𝑥𝑥, and state estimations are represented as ̂𝑥𝑥𝑥.

MODEL PREDICTIVE CONTROL
MPC minimizes the cost function 𝐶 for a finite-time hori-

zon, while only applying the current 𝑢𝑡. In the next time
slot, the optimization happens from the next time slot for
the next finite-time horizon while only applying 𝑢𝑡+1. This
optimization is iterated during the simulation. As a result,
there is a sequence of inputs, denoted as 𝑈𝑈𝑈𝑡+𝑘, and states,
denoted as 𝑋𝑋𝑋𝑡+𝑘. The cost function for the optimization is

𝐶 = 𝐸 + 𝑤𝑒. (1)

Where 𝑤 weights 𝑒 over 𝐸, 𝑒 is the state-error in the finite-
time horizon, and 𝐸 is the energy spent by the RF amplifier
in the finite-time horizon. The optimization condition is
formulated as

min
𝑈𝑈𝑈𝑡+𝑘

𝐶(𝑈𝑈𝑈𝑡+𝑘), (2)

𝑠.𝑡 ∶ ̇𝑥𝑥𝑥 = 𝑓 (𝑥𝑥𝑥(𝑡), 𝑢𝑢𝑢(𝑡)).

The nonlinear MPC solves the minimization problem (2)
with nonconvex optimization algorithms with the given con-
straints.

SURROGATE MODEL
Nonlinear auto-regressive exogenous model (NARX) is

used to model LLRF as the following

̂𝑥 ̂𝑥 ̂𝑥 𝑡 = 𝐺(𝑥𝑡𝑥𝑡𝑥𝑡, 𝑥𝑡−1𝑥𝑡−1𝑥𝑡−1, ..., 𝑢𝑡𝑢𝑡𝑢𝑡, 𝑢𝑡−1𝑢𝑡−1𝑢𝑡−1, ...) + 𝜖𝑡. (3)

The function 𝐺 is the surrogate model defined by LSTM
and RNN. 𝜖𝑡 is the error of the estimation characterised by
mean squared error (MSE). The surrogate model is updated
by Algorithm 1.

Algorithm 1: Hierarchical Intelligent Learning
1) Do MPC offline and produce data for 𝑋𝑋𝑋 and 𝑈𝑈𝑈;
2) Obtain 𝐺 from the data in step 1;
3) Apply 𝐺 to the LLRF and do the optimal control
online;

4) If | ̃𝑥𝑥𝑥(𝑡) − ̂𝑥𝑥𝑥(𝑡)| > 𝛿
A) Use TL to fine-tune 𝐺 with ̃𝑥𝑥𝑥(𝑡);
B) Do MPC offline and produce data for 𝑋𝑋𝑋 and 𝑈𝑈𝑈;
C) Apply transfer learning to fine-tune 𝐺 with the

data from step B;
End;

5) Return to step 3.

TRANSFER LEARNING
The first TL is to run MPC simulation for the LLRF model

in order to produce data. RNN and LSTM are trained on
these data and we refer to this network as the initial surrogate
model. With sufficient data and a ML surrogate model archi-
tecture, the initial surrogate model should predict the states
̂𝑥𝑥𝑥(𝑡) with minimal error, i.e. | ̃𝑥𝑥𝑥(𝑡) − ̂𝑥𝑥𝑥(𝑡)| stays close to zero.

However, this condition does not always holds true, and TL
uses ̃𝑥𝑥𝑥(𝑡) to fix the bias of surrogate model and fine-tune
it. Figure 2 shows the transfer of surrogate model from one
domain of data set to another domain of the data set. In TL,
after training the initial surrogate model, the weights and
biases in the majority of the layers of the deep learning are
kept fixed except in the very last layers. The weights and
biases in the last layers are retrained with the target data set.

Figure 2: TL.

SUMMARY AND FUTURE WORK
With ML and TL, online MPC can be used to apply con-

straints and cost functions to LLRF to increase its perfor-
mance. HPC is used to produce data, do MPC offline, and
train the surrogate model. Online measurements from LLRF
and data from MPC fine-tune the surrogate model with TL.
The surrogate model does the optimal control on LLRF on-
line. Different nonconvex optimization, objective functions,
and constrains will be examined for MPC to obtain the best
configurations of MPC for LLRF.
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