
A MACHINE LEARNING TECHNIQUE FOR
DYNAMIC APERTURE COMPUTATION

M. Ben Ghali, B. Dalena∗

CEA, Irfu, DACM, Paris-Saclay University, Gif-sur-Yvette, France

Abstract
Currently, dynamic aperture calculations of high-energy

hadron colliders are performed through computer simula-
tions, which are both a resource-heavy and time-costly pro-
cesses. The aim of this study is to use a reservoir computing
machine learning model in order to achieve a faster extrap-
olation of dynamic aperture values. A recurrent echo-state
network (ESN) architecture is used as a basis for this work.
Recurrent networks are better fitted to extrapolation tasks
while the reservoir echo-state structure is computationally
effective. Model training and validation is conducted on a set
of “seeds”corresponding to the simulation results of different
machine configurations. Adjustments in the model archi-
tecture, manual metric and data selection, hyper-parameters
tuning and the introduction of new parameters enabled the
model to reliably achieve good performance on examining
testing sets.

INPUT DATA
The Dynamic Aperture (DA) represents the region of sta-

ble motion of a particle after a certain number of revolutions
in an accelerator [1]. The sources of the instability are mag-
netic fields and elements placement imperfections. In large
hadron machines , since these magnetic field errors are not
known precisely, Monte Carlo simulations of different ma-
chine configurations using Gaussian distributed errors values
are usually performed [2,3]. DA is typically used to: i) define
tolerances on field quality; ii) define non-linear corrections
schemes in the design phase of the accelerator; iii) verify the
effect of correction in real running machines. The Dynamic
Aperture values used in this paper have been estimated us-
ing the initial amplitude corresponding to particle lost after
the 10𝑛 revolutions. Alternatively, the divergence of nearby
trajectories in the phase space is followed to define the limit
between chaotic and non-chaotic motion (Lyapounov expo-
nent) [4]. However, the methods listed above require both
massive tracking simulations (from one day to one week or
more depending on the test case and its complexity). For
example, in order to determine the amplitude at which the
particles are stable after 105 revolution, we track 60 par-
ticles with initial amplitudes distributed over 59 angles in
the 𝑥 − 𝑦 phase space, up to a maximum amplitude of 25 σ
(i.e. number of beam size) in steps of 1 σ for each machine
configuration (called seeds), see Fig. 1. These tracking sim-
ulations can be executed in parallel on a cluster or on the
BOINC platform [5, 6].

Due to its computational effort, DA is presently computed
at typically 105-106 number of revolutions in the accelerator,
∗ barbara.dalena@cea.fr

Figure 1: Stable initial amplitude of particles (normalized to
beam sizes) after 105 revolution (red) and all initial ampli-
tude of particles simulated (blue). We greatly acknowledge
all BOINC volunteers who supported LHC@Home project,
giving for free their CPU time and allowing these results to
be produced.

which is much less (∼90 s) than the LHC beam lifetime (up
to 12 hours). Starting from the ensemble of initial amplitude
of particles lost in the 𝑥 − 𝑦 phase space (or equivalently the
maximum initial amplitude of stable particles), shown in
Fig. 1, DA can be defined, according to Ref. [2], as:

𝐷𝐴(𝑁) = 2
𝜋 ∫

𝜋/2

0
𝑟𝑠(𝜃; 𝑁)𝑑𝜃, (1)

where 𝑁 is the number of revolutions of the particle in the
accelerator (called turns), 𝑟𝑠 is the last stable amplitude (dis-
regarding stability islands non-connected to the origin) and
𝜃 is the angle in the 𝑥 − 𝑦 phase space. Thus, a value of DA
can be calculated as a function of turns, which is shown in
Fig. 2 for one configuration of the machine. The numerical
DA values, coming from the tracking simulations, are sparse
in the number of turns. In order to have data at regular turns
interval we have, as first approximation, used the fill-forward
methods of pandas library. This can allow to get DA value at
each turn, but to reduce computational cost without loosing
real numerical values coming from the numerical simula-
tions, one value each 100 turns is used in the following. In
Ref. [7], Gaussian processes are used to generate points in
between the DA numerical values.

ECHO STATE NETWORK
Historically, while able to efficiently perform interpolation

and classification tasks, machine learning models have noto-
riously struggled with extrapolation. Since we are aiming

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB201

THPAB201C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

4172

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques



0 2000 4000 6000 8000 10000
turns

11.5

12.0

12.5

13.0

13.5

14.0

D
A

(N
)

[σ
]

Figure 2: Dynamic Aperture as a function of number of
revolutions in the accelerator (turns) for one machine con-
figuration.

to extrapolate functions using the smallest possible number
of known data points, as points are currently simulated and
thus too costly to compute, this makes Artificial Neural Net-
work (ANN) not suitable for our purpose. Therefore, we
explore the possibility to predict DA with a generative Re-
current Neural Networks (RNN). The latter are feed-forward
structures which can keep track of previous entries and their
outcomes, and make future predictions. Particularly, we use
Echo State Networks (ESN) [8, 9], whose general scheme
is shown in Fig. 3. Instead of training our neural network
with parts of a given target function as it is usually the case
in interpolation machine learning problems, the network is
trained over a number of sample data sets each correspond-
ing to a fully simulated DA computation. This is meant for
the network to learn the inherent behaviour of the DA as
function of turns. The trained network is then fed with the
initial data points for a new target function and is run in gen-
erative mode to predict the remaining points for that specific
instance. ESN are a family of recurrent neural networks
which are comprised of two main components:

• The “reservoir”, a nonlinear transformation applied
to all inputs. It depends on the Win and W matrices
which are generated randomly at each new instance of
the network (with respect to certain criteria), and never
changed during training or prediction.

• The “readout”, the final layer that computes the output,
given the input transformed by the reservoir. This is
the only trainable part of an ESN and is optimized
during training. In our case the readout layer is a linear
combination of reservoir elements. This combination
is defined by Wout matrix which is computed via linear
regression at the end of the training phase using all
training data sets.

The advantage of this kind of network is the faster com-
putation time. Even with more complex readout layers it
remains a relatively simple output to train, also because the
reservoir, sparse by definition, is not computationally-heavy.

Figure 3: Echo State Network general scheme.

STRUCTURE OF MODEL AND
HYPER-PARAMETERS

Here we describe more in the details our ESN implemen-
tation and the tuning of its hyper-parameters. First, Win and
W (which are used to update the reservoir) are generated ran-
domly with the sparse condition respected. W must also be
of a spectral radius smaller than 1, which is the condition for
the algorithm to converge (called the “reservoir condition”).
This is easily achieved by dividing the randomly generated
matrix’s values by its greatest eigenvalue. At each iteration,
given an input u (in our case the DA as function of turns),
the reservoir state x is updated according to the following
formula:

x(𝑛+1) = (1−𝑎) x(𝑛)+ 𝑡 𝑡𝑎𝑛ℎ(Win[1, u(𝑛+1)]+Wx(𝑛))

, where a is the reservoir leaking rate, t is the tanh leaking
rate and [1,.] is the stack of a constant and the input vector.
𝑡𝑎𝑛ℎ() with a vector argument is defined as the vector whose
components are the hyperbolic tangents of the corresponding
components of the argument vector. It acts as the activation
function of the network and ensures the non-linearity of the
reservoir transformation. The input vector, u, will depend
on whether the network is running in training or generative
mode. The reservoir output is obtained as:

y(𝑛) = 𝑔(Wout[1, u(𝑛), x(𝑛)]),

where Wout is randomly initiated then computed through
training, and 𝑔 is the readout activation function. In the case
discussed in the present paper 𝑔 is the identity, keeping the
linearity of the output layer. Studies of non-linear readout
layer are in progress.

The hyper-parameters of the presented model are:
• Reservoir size: the dimension of the state x;
• Leaking rate a;
• Reservoir connectivity: the percentage of non-zero

connections in the reservoir. This dictates how sparse
the reservoir matrix is by setting a number of reservoir
weights to 0. This number is a ratio than can go from
0 to 1 where 1 corresponds to the default randomly-
generated weights and 0 to a completely sparse reser-
voir;

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB201

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

THPAB201

4173

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



• Spectral radius: is the largest eigenvalue of the reser-
voir matrix. The reservoir weights are scaled by their
biggest eigenvalue, and then multiplying them by our
“spectral radius”parameter.

• Leaking rate t: an additional leaking rate parameter
which complements the previous one, a;

• Teacher-forcing: consists in the introduction of a feed-
back loop in the reservoir update. It has a slightly
positive impact on the performance.

• Other parameters: input scaling (scaling of input
weights), noise level (random noise term in the reser-
voir update), n_drop (the number of reservoir states to
drop in the beginning before starting storing) are either
unused or set to “default”values (where they do not
intervene in the network).

The tuning of hyper-parameters was mostly done through
a grid search script. We use the Median Absolute Error
(MEA) to establish the performance of the ESN but further
systematic studies are foreseen. We looked for correlation
in reservoir size and connectivity, spectral radius and con-
nectivity, and between the two leaking rates (a and t). None
of them has shown a sharp correlation. While there seems
to be a general decrease in error as we use bigger reservoirs,
we can still easily achieve the best performance with smaller
ones, if we select the right connectivity values. This is rele-
vant as reservoir size heavily affects the computation time.
Overall, connectivity seems to have less impact on error val-
ues than spectral radius. There seems to be a 1:1 correlation
between the two leaking rates (t and a) but with a large base.
This leads to a preference of small but not equals values for
both. In particular, too small tanh coefficient (t) values re-
sult in a stationary reservoir which does not update. Finally,
we have tested the linear readout layer. Ridge regression is
traditionally used in the readout layer to fit data. It is defined
by the addition of an L2 norm penalty term (𝜆). Opposed to
this is the Lasso regression which uses an L1 norm penalty.
In the Elastic-Net regression [10], using the alpha parameter
(L1 rate), we can give greater weight to the Ridge or Lasso
component. Our test confirms that a Ridge regression is the
best fit for our model.

PERFORMANCE
Using the best grid search results for the hyper-parameters

(spectral radius : 0.35; connectivity : 0.8; leaking rate : 0.25;
tanh leak : 1; Ridge coefficient : 5.0; Reservoir size : 250),
(-1,1) MinMax Scaling of the input data, teacher-forcing,
100-step data sampling, and 20:39 training to testing seed
split, the model is able to predict the DA values. It shows a
capacity of yielding non-linear solution which well describes
the data of several seeds used for testing, as shown in the
top panel of Fig. 4.

The Median absolute error scores are within the preci-
sion margin for DA applications for most of the seeds. It
does however come with the drawbacks of a few outliers
seeds, where predictions are worse, as can be seen in the
bottom panel of Fig. 4. When we run the model on the

Figure 4: Dynamic Aperture as a function of sampled turns
(each 100 turns) compared with one of the best Echo State
Network prediction (top panel); Median Absolute Error vs
seed (bottom panel) for training (up to 20) and test data.

longer 100000-turn seeds we immediately see a drop in per-
formance. Not only we have higher error values, we also see
an increase in the number of divergent seeds. This may sug-
gests that the number of parameters used for training might
not be enough for the longer turns data. Finally, we retry
predicting without the use of training seeds by training the
model on the start of each data set. We find that the results
are unreliable as model diverges in a seemingly completely
random fashion.

CONCLUSION AND PERSPECTIVES
The Echo State Network implemented in this work shows

strong potential to predict the time evolution of dynamic
aperture. However, its capacity in reproducing test data re-
quires several complete simulations to be used for training.
A model which does not need as much data as current exam-
ples must be achieved. To this purpose both the possibility
of using several reservoirs (randomly initialized) and to use
alternative readout layers are foreseen.

REFERENCES
[1] E. Todesco et al., “Dynamic aperture estimates and phase-

space distortions in nonlinear betatron motion”, Phys. Rev.
E,vol. 53, p. 4067, 1996.
doi:10.1103/PhysRevE.53.4067

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB201

THPAB201C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

4174

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques



[2] E. H. Maclean et al., “Innovative method to measure the ex-
tend of the stable phase-space region of proton synchrotrons”,
Physical Review Accelerators and Beams, vol. 22, p. 034002,
2019. doi:10.1103/PhysRevAccelBeams.22.034002

[3] M. Giovannozzi, “Proposed scaling law for intensity evo-
lution in hadron storage rings based on dynamic aperture
variation with time”, Phys. Rev. ST Accel. Beams, vol. 15, p.
024001, 2012. doi:10.1103/PhysRevSTAB.15.024001

[4] F. Schmidt, F. Willeke, and F. Zimmermann, “Comparison
of methods to determine long-term stability in proton storage
rings”, Particle Accelerators, vol. 35, pp. 249-256, 1991.

[5] D. P. Anderson, “BOINC: a System for Public-Resource Com-
puting and Storage”, in Proc. of the 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, Pittsburgh, USA, 2004,
pp. 4-10. doi:10.1109/GRID.2004.14

[6] J. Barranco et al., “LHC@Home: a BOINC-based volunteer
computing infrastructure for physics studies at CERN”, Open
Engineering, vol. 7, p. 378, 2017.
doi:10.1515/eng-2017-0042

[7] M. Giovannozzi et al., “Machine Learning Applied to the
Analysis of Nonlinear Beam Dynamics Simulations for the
CERN Large Hadron Collider and Its Luminosity Upgrade”,
Information, vol. 12, p. 53, 2021.
doi:10.3390/info12020053

[8] H. Jaeger, “The echo state approach to analysing and train-
ing recurrent neural networks”, German National Research
Institute for Computer Science, Germany, Rep. GMD-Report
148, 2001.

[9] J. Pathak et al., “Using Machine learning to replicate chaotic
attractors, and calculate lyapunov exponent from data”,
Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 27, no. 12, p. 121102, Dec. 2017.
doi:10.1063/1.5010300

[10] Pedregosa et al., “Scikit-learn: Machine Learning in Python”,
JMLR, vol. 12, pp. 2825-2830, 2011. arXiv:1201.0490

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB201

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

THPAB201

4175

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


