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Abstract 
ATLAS is a DOE/NP User Facility for the study of low-

energy nuclear physics with heavy ions. It operates 
~6000 hours per year. In addition to delivering any stable 
beam from proton to uranium, the facility also provides ra-
dioactive beams from the CARIBU source or via the in-
flight radioactive ion separator, RAISOR. The facility uses 
3 ion sources and services 6 target areas at energies from 
~1-15 MeV/u. To accommodate the large number and va-
riety of approved experiments, ATLAS reconfigures once 
or twice per week over 40 weeks of operation per year. The 
start-up time varies from ~12-48 hours depending on the 
complexity of the tuning, which will increase with the up-
coming Multi-User Upgrade to deliver beams to two ex-
perimental stations simultaneously. DOE/NP has recently 
approved a project to use AI/ML to support ATLAS opera-
tions. The project aim is to significantly reduce the accel-
erator tuning time and improve machine performance by 
developing and deploying artificial intelligence methods. 
These improvements will increase the scientific throughput 
of the facility and the quality of the data collected. Our re-
cent developments and plans will be presented and dis-
cussed.  

INTRODUCTION 
The use of machine learning (ML) and artificial intelli-

gence (AL) has the potential of significantly reducing the 
time needed to tune an accelerator. This is very important 
for ATLAS [1] due to the frequency of machine tuning, 
where a new beam is tuned once or twice a week. In addi-
tion to the existing multiple sub-systems of the ATLAS fa-
cility, such as CARIBU [2] and RAISOR [3], the upcoming 
Multi-User Upgrade [4] will further complicate machine 
operations. The timely development and implementation of 
AI/ML techniques will be very beneficial to the whole fa-
cility. By reducing the time for beam tuning, more beam 
time will be available to help relieve the over-booked ex-
perimental nuclear physics program at ATLAS. In addition 
to beam tuning, AI/ML models can be used to improve 
beam quality with the installation of new diagnostics and 
real-time data acquisition. These improvements have the 
potential of increasing the scientific throughput of the fa-
cility and the quality of the data collected. 

To support these developments, DOE/NP has recently 
approved a project to use AI/ML for ATLAS operations. 
Following a description of the project objectives and future 
plans, the results from some recent developments will be 
presented and discussed. 

PROJECT OBJECTIVES & PLANS 
The main project goal is to use AI/ML techniques to 

streamline beam tuning and help improve machine perfor-
mance. The project objectives are three-fold: 
 Establish data collection, organization and classifica-

tion, towards a fully automatic and electronic data col-
lection for both machine and beam data 

 Develop an online tuning model to optimize opera-
tions, shorten beam tuning time and make more beam 
time available for the experimental program 

 Develop a virtual machine model to enhance our un-
derstanding of the machine behavior, improve ma-
chine performance and optimize particular aspects and 
help develop new operating modes 

Data Collection 
Figure 1 below shows a sample of historic machine set-

tings and beam parameters data recorded at ATLAS. For 
every beam tune, this information is stored and can be re-
used or re-scaled to start a new tune for a different ion 
beam. Currently, some of the beam data is collected in pa-
per only form and had to be entered manually in the shown 
spreadsheet. As part of this project, we plan to move to 
fully automatic and electronic data collection. 

 
Figure 1: A sample of historic machine settings and beam 
data for the ATLAS linac. 

Online Tuning Model 
The main goal of the online tuning model is to optimize 

operations and shorten the beam tuning time in order to 
make more beam time available for the experimental pro-
gram. A first version of this model consists of an initial tune 
model based on the existing machine tunes database and a 
set of optimization procedures and feedback loops fed by 
online data. The model can be further enhanced with new 
data from additional real and virtual beam diagnostics. 

Virtual Machine Model 
The main goal of the virtual machine model is to enhance 

our understanding of the machine behaviour in order to im-
prove the performance and optimize particular aspects and 
new operating modes. It will be particularly useful for 
multi-beam transport and acceleration as part of the up-
coming ATLAS multi-user upgrade, as well as for high-in-
tensity beams. Since full beam physics models, which 
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usually include particle tracking in 3D fields, are slow and 
not very useful to support online accelerator operations, we 
are developing surrogate AI models for different sections 
of the linac. A surrogate model can be trained on beam sim-
ulation data to reliably reproduce the physics results in very 
short time, then be enhanced with experimental data. A pre-
liminary surrogate model developed for the ATLAS RFQ 
is presented in the following section. 

SURROGATE MODELS FOR ATLAS RFQ 
We have developed a surrogate model for the ATLAS 

RFQ, which is the first accelerating section of the linac and 
often the most time consuming when simulated with 3D 
fields and particle tracking using the beam dynamics code 
TRACK. The goal is to be able to reliably reproduce the 
physics results in the shortest possible time. To generate 
the data to train the model, we performed 7000 TRACK 
simulations. Both the input and output beam parameters 
were recorded for each simulation. The main focus was on 
beam transmission and output Twiss parameters as func-
tions of input beam parameters which include the beam 
emittances and input Twiss parameters. At first, a neural 
network with three hidden layers was used. Although it was 
promising the error was not satisfactory (objective was not 
optimally met). Then we tried a neural network with two 
hidden layers and two residual blocks directly connecting 
the input to the output [5], and the results were significantly 
improved. A schematic of the model is shown in Fig. 2 be-
low. 

 
Figure 2: Schematic of a neural network surrogate model 
for the ATLAS RFQ. 

Two models were developed using the same data set. The 
first was trained only to reproduce the beam transmission 
rate, while transverse Twiss parameters were added to the 
second one. Figure 3 shows the loss function/error and con-
vergence for both models. We can clearly see the deterio-
ration in the model performance as the dimension of the 
problem increased. This also means that by increasing the 
size of the data set, we should be able to recover the origi-
nal model accuracy. Since the same data set was used in 
both cases, the degrees of freedom for the model have de-
creased by increasing the dimensionality of the problem. 

In addition to more data, the accuracy of the model can 
also be improved by exploring more advanced and deeper 
NN architectures, which we didn’t pursue at this time be-
cause the results were satisfactory as shown in Fig. 4, com-
paring the results predicted by the surrogate model to the 
actual results from the physics model. The agreement is 
very good, it’s consistent with the comparison of two beam 
dynamics codes, TRACK vs. IMPACT for example [6]. 

Therefore, the surrogate model can be considered reliable 
and capable of reproducing the physical results, with the 
big advantage of being ~ 30,000 faster than the 3D model 
in this case. This is exactly what is needed for an online 
machine model to be useful for fast optimization during 
beam tuning and routine operations. The speed-up factor is 
from 90 seconds for tracking 10,000 particles through the 
RFQ to 0.003 second using the RFQ surrogate model. 

 
Figure 3: Loss function, in this case the mean squared error 
(χ2), showing the convergence (training to actual value) for 
two models. The one on the left was trained only for beam 
transmission rate (1D), while the one on the right also in-
cluded the transverse Twiss parameters of the beam (5D). 

 
Figure 4: Comparison of the RFQ surrogate to the physical 
model results for 100 simulations. Included are output 
Twiss parameters and beam transmission rate. 

MODELS FOR PARTICLE TRACKING 
The stated goal of creating an ML surrogate model for 

particle tracking is divided into two problems: classifica-
tion and regression. For the classification problem, a model 
is trained to predict whether particles are accepted into the 
RFQ by supplying samples of input particle coordinates 
and their integer acceptance flag. The regression problem 
refers to predicting output coordinates from input coordi-
nates, requiring training on pairs of input and output coor-
dinates for already accepted particles. The two models can 
then chain into one process, first predicting acceptance or 
loss, then finding the output coordinates if the particle was 
accepted. The task starts by generating the data. 

Data Generation 
Particle coordinate data, namely, the input and output co-

ordinates of particles, as well as an integer flag indicating 
acceptance (1) or loss (0), was generated for the ATLAS 
RFQ using the beam dynamics code TRACK. A continuous 
(DC) beam of 10,001 uranium-238 atoms (q = +34) was 
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simulated as it passed through the RFQ. This was repeated 
for 1,000 different combinations where the beam parame-
ters: x and y emittances and energy spread, were varied. 
The results of all simulation runs were aggregated into a 
single dataset of ~10 million particles. Of these ~ 27% were 
accepted. The distributions of lost and accepted particles in 
phase space are shown in Fig. 5.  

 
Figure 5: Distributions of accepted (orange) and lost parti-
cles (blue) in the phase-space of initial (u0) coordinates. 
Top plots are probability densities for acceptance and loss 
with respect to dt0, x0, and y0, bottom plots display the ac-
ceptance of the RFQ in the 2D phase planes. 

Models & Training Process 
For the classification and regression problems, we used 

the PYTHON libraries SCI-KIT LEARN [7] (SL) and 
TENSORFLOW KERAS [8, 9] (TF) to implement Ma-
chine Learning (ML) models for this study. SL provides a 
selection of frequently used ML algorithms which package 
the model, loss, and optimizer into one entity. TF allows 
the construction of custom Deep Learning (DL) Neural 
Network (NN) topologies which can be compiled with var-
ious loss functions and optimizers. 

For each problem, the data was split into training, vali-
dation, and test sets. For classification, the split was in the 
ratio 60:20:20. Since output coordinates for lost particles 
cannot be defined, only data for accepted particles (2.7 mil-
lion) was used for regression and was split in the ratio 
70:10:20. The training split was presented for the model to 
learn, while the validation split was used to track model 
performance during training. Final evaluation and compar-
ison of the models was performed with the test split. 
Trained models were saved for later use in applications. 

Classification Models for Particle Acceptance 
Figure 6 compares the performance of different ML and 

DL classification model architectures based on the Accu-
racy, Precision and Recall criteria defined below:  
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ሺtrue predictionsሻ/(𝑡𝑜𝑡𝑎𝑙 s𝑎𝑚𝑝𝑙𝑒𝑠) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)/(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 𝑅𝑒𝑐𝑎𝑙𝑙 = (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)/(𝑟𝑒𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

 
The first two ML models, ‘freq’ and ‘strat’ are ‘most fre-

quent’ and ‘random stratified’ guessing strategies, respec-
tively. They provide a baseline for comparing model per-
formance. LR, PAC, Ridge, and LDA are linear models, 
while the rest are nonlinear models. The DL models to the 
right (TFCn) are NN architectures. TFC1, 2, and 3 include 
L2 regularization and all models use dropout layers. Binary 
cross-entropy was chosen as a loss function and was 

minimized using the Adam [10] optimizer for the DL clas-
sification models. The figure clearly shows that TFC0, 
TFC2 and Tree are the best models for particle acceptance. 

 
Figure 6: Comparison of classification models using Accu-
racy (top), Precision (middle), and Recall (bottom) plots. 
Higher scores indicate better performance. Partitions delin-
eate dummy guessers, ML, DL models, respectively. 

Regression Models for Output Coordinates 
Similarly, a variety of models were used for the regres-

sion problem. As for the classification case, the ‘Dummy’ 
regressor provides a baseline for model performance. 
OLSR Ridge are linear models and the rest are nonlinear. 
The DL models TF0, 1, 3 and 4, share the same architecture 
as those for the classification problem, except that the last 
layer was altered to obtain six outputs. A new architecture 
(TF2) based on beam physics was added, where the trans-
formation is decomposed into a linear and nonlinear terms. 

Figure 7 compares the performance of the different ML 
and DL models based on the average Mean Square Error 
(aMSE) and average Mean Absolute Error (aMAE). These 
metrics were evaluated on the training, validation, and test 
data sets. The first two were used to indicate overfitting 
during the training process, because an overfit model will 
perform significantly better on the training split than the 
validation split. The value of the metrics from the test split 
was used for final model evaluation to select the best mod-
els for each problem as good candidates for future work. 

 
Figure 7: Comparison of regression models using the error 
metrics aMSE and aMAE. Smaller errors indicate better 
performance. Partitions delineate the dummy regressor, 
ML, and DL models, respectively. 
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