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Abstract
We show how to treat transverse collective instabilities

when operating in the vicinity of the coupling (or tune dif-
ference) resonance. We begin by defining the approximate
independent degrees of freedom including both linear cou-
pling and chromatic effects. We then show how the destabi-
lizing force due to wakefields and the stabilizing chromatic
effects can be described by a linear combination of the hori-
zontal and vertical motion that depends upon how close one
is to the resonance. The theory agrees well with tracking
studies, and will be relevant for those next-generation stor-
age rings that plan to operate near the coupling resonance
to produce nearly round beams, including the multi-bend
achromat upgrade for the Advanced Photon Source.

INTRODUCTION
Storage ring design usually begins with a lattice whose

linear dynamics in the horizontal and vertical planes are
independent (uncoupled). Skew quadrupoles are then added
to set the coupling between the two directions to a desired
(typically small) level. Even when the 𝑥-𝑦 coupling is small,
however, it is well-known that the motion in the two planes
becomes essentially inseparable if the vertical and horizontal
tunes differ by approximately an integer. Motion near the lin-
ear coupling (or tune difference) resonance is stable with an
equilibrium that has equal emittances in each plane. Several
next-generation, low-emittance storage rings are planning to
operate on the coupling resonance to produce nearly round
particle beams with a longer Touschek lifetime.

The horizontal and vertical emittances are equal on the
coupling resonance because the independent degrees of free-
dom are composed of equal parts motion in 𝑥 and 𝑦. Simi-
larly, other properties that are usually characterized by their
horizontal and vertical components will become “mixed”
near the coupling resonance. For example, the effects of hor-
izontal and vertical wakefields will no longer be independent
when 𝜈𝑥 ≈ 𝜈𝑦, and also the stabilizing role of chromaticity
will depend upon its value along both 𝑥 and 𝑦. This pa-
per describes collective effects near the coupling resonance,
showing that the collective dynamics can be characterized
by wakefields and chromaticities that result from “sharing”
those of the horizontal and vertical directions.

SKETCH OF THE THEORY
The first step of the theory is to identify the three indepen-

dent degrees of freedom for single particle motion including
transverse coupling and chromatic effects. Our first step
along this path prepares to decouple the 𝑥-𝑦 motion in the
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usual way by defining the complex coordinates

𝑢𝑥(𝑠) = √𝒥𝑥 𝑒𝑖Ψ𝑥𝑒−2𝑖𝜋(𝜈𝑥−Δ𝜈/2)𝑠/𝒞𝑅𝑒𝑖𝜑𝑟/2 (1)

𝑢𝑦(𝑠) = √𝒥𝑦 𝑒𝑖Ψ𝑦𝑒−2𝑖𝜋(𝜈𝑦+Δ𝜈/2)𝑠/𝒞𝑅𝑒−𝑖𝜑𝑟/2, (2)

where 𝒥𝑥,𝑦 are the horizontal (vertical) actions in a smooth
focusing lattice, Ψ𝑥,𝑦 are the angles, 𝒞𝑅 is the ring circum-
ference, and Δ𝜈 = 𝜈𝑥 − 𝜈𝑦 is the tune difference; the phase
𝜑𝑟 is associated with the phase of the skew quad settings
such that within the single resonance approximation the skew
quads result in the coupling 𝜅𝑢𝑥𝑢∗

𝑦/2 + 𝑐.𝑐., where 𝜅 is pro-
portional to the skew quadrupole strength. In the transverse
plane the single particle equations of motion are

𝑢′
𝑥 − 2𝜋𝑖(Δ𝜈/2 − 𝜉𝑥𝑝𝑧)𝑢𝑥/𝒞𝑅 = (𝑖𝜅/2𝒞𝑅)𝑢𝑦 (3)

𝑢′
𝑦 + 2𝜋𝑖(Δ𝜈/2 − 𝜉𝑥𝑝𝑧)𝑢𝑦/𝒞𝑅 = (𝑖𝜅/2𝒞𝑅)𝑢𝑥. (4)

We want a new set of three independent degrees of free-
dom that eliminates the 𝑥-𝑦 coupling ∝ 𝜅 and the chromatic
dependence ∝ 𝜉𝑥,𝑦𝑝𝑧. For example, in the absence of chro-
maticity these are linear combinations of 𝑢𝑥 and 𝑢𝑦 (see,
e.g., [1–3]) that we can write as 𝑢+ = 𝑢𝑥 cos 𝜃 + 𝑢𝑦 sin 𝜃 and
𝑢− = −𝑢𝑥 sin 𝜃 + 𝑢𝑦 cos 𝜃, where the coupling angle 𝜃 is
defined by tan 2𝜃 = 𝜅/(2𝜋Δ𝜈) with 0 ≤ 𝜃 ≤ 𝜋/2.

On the other hand, when 𝜅 → 0 we can remove the chro-
matic dependence by introducing the head-tail (chromatic)
coordinates ̃𝑢𝑥 = 𝑢𝑥𝑒𝑖𝑘𝜉𝑥𝑧 and ̃𝑢𝑦 = 𝑢𝑦𝑒𝑖𝑘𝜉𝑦𝑧. These differ
from the 𝜉 = 0 coordinates by the head-tail phases [4, 5]
that are proportional to the chromaticity and given by

𝑘𝜉𝑥𝑧 = (2𝜋𝜉𝑥/𝛼𝑐𝒞𝑅)𝑧 𝑘𝜉𝑦𝑧 = (2𝜋𝜉𝑦/𝛼𝑐𝒞𝑅)𝑧. (5)

In the general case we can approximately decouple the de-
gree of freedom by defining 𝑘+ = 𝑘𝜉𝑥 cos2𝜃 + 𝑘𝜉𝑦 sin2𝜃 and
𝑘− = 𝑘𝜉𝑥 sin2𝜃 + 𝑘𝜉𝑦 cos2𝜃 and introducing the coordinates

[𝑢+
𝑢−

] = [ 𝑒𝑖𝑘+𝑧 cos 𝜃 𝑒𝑖𝑘+𝑧 sin 𝜃
−𝑒𝑖𝑘−𝑧 sin 𝜃 𝑒𝑖𝑘−𝑧 cos 𝜃] [𝑢𝑥

𝑢𝑦
] . (6)

The new coordinates (𝑢+, 𝑢−) match the usual set far
from the coupling resonance (𝜃 → 0, 𝜋/2) or when
∣𝑘𝜉𝑥𝑧∣, ∣𝑘𝜉𝑦𝑧∣ ≪ 1; any coupling between the two is negli-
gibly small provided the chromatic tune difference is much
less than coupled oscillation tune, 𝜎𝛿 ∣𝜉𝑥 − 𝜉𝑦∣ ≪ 𝜅.

Including wakefields in the 𝑢± dynamics leads to

𝑢′
+ = +𝑖𝜔𝜅𝑢+ + 𝑖(𝜕𝑉wake/𝜕𝑢∗

+) 𝑧′ = 𝛼𝑐𝑝𝑧 (7)
𝑢′

− = −𝑖𝜔𝜅𝑢− + 𝑖(𝜕𝑉wake/𝜕𝑢∗
−) 𝑝′

𝑧 = −𝐹𝑧, (8)

where the coupled frequency 𝜔𝜅 = √𝜅2 + (2𝜋Δ𝜈)2/2𝒞𝑅,
𝐹𝑧 is the longitudinal force, and 𝑉wake is a rather complicated
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function. It turns out that if we define the “coupled mode”
wakefield

𝑊+(𝑧) = cos2𝜃 𝑊𝑥(𝑧) + sin2𝜃 𝑊𝑦(𝑧), (9)

then one can show that the wakefield force

𝜕𝑉wake
𝜕𝑢∗

+
∝ 𝑢+ ∫𝑑 ̂𝑧𝑑 ̂𝑝𝑧 𝑒𝑖𝑘+(𝑧− ̂𝑧)𝑊+(𝑧 − ̂𝑧),

− 𝑢− ∫𝑑 ̂𝑧𝑑 ̂𝑝𝑧 𝑒𝑖(𝑘+𝑧−𝑘− ̂𝑧)𝑊𝑐(𝑧 − ̂𝑧),
(10)

where 𝑊𝑐(𝑧) = sin(2𝜃) [𝑊𝑦(𝑧) − 𝑊𝑥(𝑧)] can typically be
neglected. This shows that the stability of 𝑢+ is governed by
the effective chromaticity 𝜉+ and wakefield 𝑊+. The mode
𝑢− is similar, but in this case the head-tail phase 𝑘−𝑧 comes
into play with the wakefield

𝑊−(𝑧) = sin2𝜃 𝑊𝑥(𝑧) + cos2𝜃 𝑊𝑦(𝑧). (11)

We could take this further to derive a set of stability equations
like those solved with modal decomposition [6,7]. However,
here we proceed to illustrate the essential dynamics using
elegant [8] tracking simulations.

EFFECTIVE CHROMATICITY
Our first examples will illustrate the role of differing chro-

maticities on collective effects when 𝜈𝑥 ≈ 𝜈𝑦. Table 1 shows
that the APS-U lattice has rather large and different chro-
maticities in the horizontal and vertical planes, which were
the result of a genetic optimization procedure designed to
maximize the x-ray brightness, Touschek lifetime, and dy-
namic aperture including errors. The final values of 𝜉𝑥 ≈ 8.1
and 𝜉𝑦 ≈ 4.7 imply that collective stability will depend upon
how close the tunes are to the coupling resonance.

Table 1: Parameters for the APS-U Storage Ring

Parameters Values

Tunes (𝜈𝑥, 𝜈𝑦) (95.1, 36.1)
Damping times (𝜏𝑥, 𝜏𝑦, 𝜏𝑧) (10.3, 23.1, 30.8) ms

Natural emittance 𝜀0 41.66 pm
Dimensionless coupling 𝜅 0.164
Chromaticities (𝜉𝑥, 𝜉𝑦) (8.106, 4.723)

Momentum compaction 𝛼𝑐 4.04 × 10−5

RMS energy spread 𝜎𝛿 0.135%
RMS length in double rf 53.6 ps

In particular, the effective chromaticity governing stability
will be a linear combination of 𝜉𝑥 and 𝜉𝑦 that is equal to the
smaller of 𝜉+ and 𝜉−. Far from the tune resonance the beam
is unstable in the vertical plane, and since 0 ≤ 𝜃 ≤ 𝜋/2
with 𝜃 = 𝜋/4 on the coupling resonance we find that

𝜉eff = 1
2(1 + |cos(2𝜃)| )𝜉𝑦 + 1

2(1 − |cos(2𝜃)| )𝜉𝑥 (12)

for the APS-U. The effective chromaticity is 𝜉𝑦 far from the
resonance, and increases the tunes approach each other to
a maximum of 𝜉eff = (𝜉𝑥 + 𝜉𝑦)/2 when 𝜈𝑥 = 𝜈𝑦. Hence,

the instability threshold current also increases near the tune
resonance, which we illustrate in this section by setting the
wakefields to be equal in the two planes.

We show results of APS-U tracking simulations including
the resistive wall impedance in Fig. 1. The red line labelled
“Coupled tracking” plots the instability threshold current
obtained from the coupled tracking. Far from the tune reso-
nance the threshold 𝐼thresh ≈ 10.5 mA, but it increases as the
fractional tunes approach each other to approximately 13.7
mA near Δ𝜈 = 0. In addition, the blue line plots the instabil-
ity current obtained from elegant tracking in an uncoupled
lattice whose chromaticity equals the 𝜉eff from Eq. (12).
For example, at Δ𝜈 = ±0.01 we have cos(2𝜃) ≈ ±0.358,
and uncoupled elegant tracking using 𝜉𝑦 = 𝜉eff ≈ 5.81
predicted 𝐼thresh ≈ 12.6 mA. The results from uncoupled
tracking with 𝜉eff in blue agrees quite well with the predic-
tions from the coupled tracking in red, and we see that the
instability threshold current changes by ∼ 30% because of
the disparate chromaticitities.
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Figure 1: Effect of unequal chromaticities on collective sta-
bility near the coupling resonance. Red lines plot the thresh-
old current obtained from the coupled model in elegant,
while the blue lines plot the 𝐼thresh for an uncoupled lattice
whose chromaticity is given by the effective value Eq. (12).

EFFECTIVE WAKEFIELD
In this section we investigate how the coupling resonance

leads to a “sharing” of the wakefields in a manner very simi-
lar to that of the chromaticity, namely that of Eqs. (9)-(11).
If stability in the uncoupled system is dictated by the verti-
cal wakefield 𝑊𝑦, then near the tune resonance the unstable
dipole motion is driven by the effective wakefield

𝑊eff = (1 + |cos(2𝜃)| )𝑊𝑦
2 + (1 − |cos(2𝜃)| )𝑊𝑥

2 . (13)

Again, when the 𝜈𝑥 = 𝜈𝑦 the effective wakefield will be
the arithmetic mean of the horizontal and vertical wakefields.

We ran additional simulations of the APS-U to investigate
the role of the effective wakefield 𝑊eff. Here we again used
the parameters of Table 1, but set 𝜉𝑥 = 𝜉𝑦 to isolate the
shared wakefield effect from that of the chromaticity. In
addition, we apply the same resistive wall impedance in the

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB075

THPAB075C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3934

MC2: Photon Sources and Electron Accelerators

A04 Circular Accelerators



vertical plane as before, but now reduce 𝑊𝑥 to see how it
changes stability near the coupling resonance.

We show simulation results in Fig. 2, where the red plots
elegant predictions when 𝑊𝑥 → 0, while the blue assumes
that the horizontal wakefield is half of that in the vertical.
The former is a somewhat artificial example for illustration,
while the latter applies to a ring that has flat chambers and
similar beta functions in each plane. Black lines plot the
theory assuming that the uncoupled 𝐼thresh = 10.6 mA and
that the effective wakefield is given by (13). The simulation
results show a clear increase of the threshold current near the
tune resonance as wakefield sharing becomes important. The
tracking agrees quite well with the theory when 𝑊𝑥 = 𝑊𝑦/2,
although the maximum is shifted slightly to negative de-
tunings. When 𝑊𝑥 = 0 this shift to Δ𝜈 < 0 is even more
pronounced, and we believe that it can be explained by the
additional coupling between the two modes that is provided
by the coupling wake 𝑊𝑐 ∝ 𝑊𝑦 − 𝑊𝑥. Regardless, it is clear
that the coupled modes respond to an effective 𝑊eff that de-
pends upon both the vertical and horizontal wakefields as
given by Eq. (2).
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Figure 2: Role of both wakefields when Δ𝜈 ≈ 0. The sim-
ulations use the same parameters and 𝑊𝑦 as Fig. 1, but set
𝜉𝑥 = 𝜉𝑦 = 4.723. Coupled tracking in elegant gives
the stability thresholds plotted by the red and blue lines
when assuming that the horizontal wakefield 𝑊𝑥 = 0 and
𝑊𝑥 = 𝑊𝑦/2, respectively. The black theory lines plots
the prediction for the effective or “shared” wakefield from
Eq. (13) using the observed, uncoupled 𝐼thresh = 10.6 mA.

COUPLED DYNAMICS FOR THE APS-U
Our final example includes the impact of both the chro-

matic and wakefield “sharing” near the coupling resonance.
Specifically, we will use the full transverse impedance
for the APS-U including both the geometric and resis-
tive wall components. In addition, we add the longitudi-
nal impedance with a ZLONGIT element, and more faith-
fully model the rf systems using RFMODE elements and the
BUNCHED_BEAM_MODE feature to model the induced voltage
from the other 47 equally-spaced “pseudobunches”. Finally,
we will keep the resulting longitudinal potential constant
for all simulations by (somewhat artificially) fixing the cur-

rent seen by the RFMODE and ZLONGIT elements at a constant
value even as we increase the current for ZTRANSVERSE. The
final result of our longitudinal modeling is a bunch that is
“overstretched” to an rms length of 100 ps, and whose energy
spread is somewhat increased by the microwave instability
to 𝜎𝛿 ≈ 0.15%.
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Figure 3: Transverse instability threshold current as a func-
tion of fractional tune difference for the full (geometric plus
resistive wall) APS-U transverse impedance.

The red line in Fig. 3 plots the simulated instability thresh-
old current as a function of fractional tune difference. The
simulations agree quite closely with the blue line derived
from elegant results obtained using an uncoupled lattice
with the effective chromaticity 𝜉eff from Eq. (12) and the ef-
fective wakefield 𝑊𝛽

eff from (13). The difference between the
maximum stable current at Δ𝜈 ≈ 0 and the uncoupled 𝐼thresh
is somewhat larger than that of Fig. 1 because the latter only
benefits from the fact that 𝜉𝑥 > 𝜉𝑦, while the increase of
𝐼thresh in Fig. 3 also comes because 𝑊𝛽

𝑥 < 𝑊𝛽
𝑦 . In addition,

we see that the uncoupled threshold current from the full
APS-U impedance in Fig. 3 is only ∼1 mA less than the
purely resistive wall wakefield of Fig. 1. This is because
the reduction in stability due to the larger wakefield is par-
tially compensated by the lower peak current and longer
bunch length provided by the longitudinal impedance and
the overstretched rf potential. Using the full wakefield with
the flattened potential of Fig. 1 reduces the uncoupled 𝐼thresh
to about 6.6 mA.

CONCLUSIONS
We have obtained approximately independent degrees

of freedom for a weakly-coupled lattice operating near the
coupling resonance, and used them to show that collective
stability is governed by an effective wakefield Eq. (13) and
chromaticity Eq. (12), each of which is a linear combination
of the uncoupled values in the horizontal and vertical planes.
Our theoretical predictions agree quite well with tracking
simulations in elegant.
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