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Abstract

Experiments at the Fermilab Accelerator Science and
Technology (FAST) facility detected electron beam-induced
high order mode (HOM) signals from Tesla superconducting
cavities. This paper describes some of the signal detection
hardware used in this experiment, as well as measurements
of the HOM signal magnitude versus beam trajectory. These
measurements were made both with a single bunch and with
a train of 50 bunches at bunch charges from 400 pC/b down
to 10 pC/b. The detection hardware is designed for use with
the Tesla superconducting cavities of LCLS-II at SLAC and
is based on a prototype already in use at Fermilab. The
HOM signal passes through a band-pass filter that is cen-
tered on several cavity dipole modes and a zero bias Schottky
diode detects its magnitude. Direct comparisons were made
between the FNAL chassis and the SLAC prototype for iden-
tical beam steering conditions. To support measurements
with bunch charges as low as 10 pC, the SLAC detector
has RF amplification between the band-pass filter and the
diode detector. With this hardware, usable HOM signal
measurements are obtained with a single bunch of 10 pC in
cryomodule cavities as will be needed for LCLS-II.

INTRODUCTION

Bunch charge passing through a cavity will induce high
order mode (HOM) fields. An off axis beam will excite
dipole modes with an amplitude that is proportional to the
beam offset, charge and coupling impedance value (R/Q) [1].
It has been shown that these beam induced HOMs can al-
ter the bunch shape and displacement of bunches or trains
of bunches [2,3]. This effect is proportionally larger for
bunches at lower energies, where the same induced fields
will produce a larger effect on the trajectory of beam parti-
cles.

Tesla-type cavities have couplers that remove RF at HOM
frequencies from the cavities — two couplers for each cavity —
that can be used to detect the presence of cavity HOM fields.
Since the beam-induced HOM fields are proportional to the
offset of the beam and its charge, they provide information
about the transverse beam offset [1,4].
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The planned bunch charges for LCLS-II range from
300 pC down to about 10 pC with repetition frequencies
of up to 929 kHz and a beam energy at the first Tesla-type
cryomodule of 750 keV. For the reasons mentioned above,
it is most critical that the HOM fields be minimized in the
cavities of this first cryomodule. During commissioning in
early 2022, it is expected that both the bunch charge and
repetition frequency will be at the low end of their range.

The hardware designed for LCLS-II will be installed on
the first cryomodule and must be ready to provide usable sig-
nals for tuning during initial commissioning of the injector.
So the design choices put a heavy weight on simplicity.

THE FERMILAB PROTOTYPE

At the Fermilab FAST facility, a prototype detector
was constructed that consists of a notch filter to remove
1300 MHz, a band-pass filter to select a range of dipole
mode HOM frequencies and a diode detector to measure the
RF magnitude. This is probably the simplest way to make
a measurement. Although it does not give the sign of the
offset or resolve the modes, it does give the essential figure
of merit — the magnitude of all the beam-induced HOMs
within its pass-band. A sketch of the 1750 MHz section of
the design is given in Fig. 1. For the February 2020 data,
an amplifier was added to an RF monitor output which was
recorded on a 4 GHz oscilloscope.
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Figure 1: Block diagram of the 1750 MHz section of the
Fermilab Prototype. This includes an amplifier (red) added
for the February 2020 experiment.

The chassis was connected to the upstream HOM probe
of a single Tesla-type cavity, capture cavity 1 (CC1), and
the chassis RF output sent to a 4 GHz oscilloscope. A sin-
gle bunch of 100 pC was sent through the cavity and an
upstream vertical steering magnet varied to change the tra-
jectory through the cavity. Figure 2 shows oscilloscope data
of the filtered and amplified RF from the signal induced by
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a 100 pC bunch with a displacement of roughly 6 mm. This
gives a sensitivity of about 25 mV/mm at 100 pC for the RF
signal. The output of the Krytar 201 A detector would be
about 8 mV/mm according to its data sheet.
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Figure 2: Oscilloscope data from February 2020, showing
the 1725 MHz HOM signal level with a single 100 pC bunch
and approximately 6 mm of vertical beam displacement.

THE DESIGN FOR LCLS-II

The design for LCLS-II is based on the Fermilab design,
using a diode detector after analog filtering. Other methods
that involve down-converting the RF can give additional
information about the sign of the displacement and separate
individual modes [1,5], but these methods will be considered
as a future upgrade path.

Figure 3 is a block diagram of the SLAC prototype front
end used in experiments at FAST beginning in November
2020. It is similar to the Fermilab design, but in order to in-
crease the range of measurable signals, a 31 dB controllable
attenuator and two cascaded +23 dB amplifiers have been
added. The second amplifier was added to obtain a usable
signal with a bunch charge of 10 pC. The amplifiers are
followed by a zero bias Schottky diode detector. The state
of attenuators and amplifiers is controllable through chassis
front panel switches, with four channels in each chassis.

The amplifiers have an enable input so that the RF is
bypassed with minimal attenuation when amplification is
disabled. Cascading these two amplifiers carries the risk
that the output of the first amplifier can damage the second.
So care must be taken in their use.

EXPERIMENTAL RESULTS
Comparison of the Fermilab and SLAC Prototypes

A direct comparison was made of the signals from the Fer-
milab prototype and the newly constructed SLAC prototype
detector under the same beam conditions. This was done
as a final check to ensure that the two newly constructed
SLAC chassis were functioning properly. We used the HOM
signals coming from CC1 in the FAST injector. A vertical
steering magnet upstream of the capture cavities was set to
0.5 A to give an offset of about 6 mm at CC1.
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Figure 3: Block diagram of the SLAC prototype channel.
There are four channels per chassis

The electron beam consisted of a train of 50 bunches
at about 125 pC/bunch with a 3 MHz repetition frequency
— this pattern repeats at 1 Hz. Signals from the Fermilab
chassis were recorded first, then the same HOM signals were
connected to the SLAC chassis without changing the state of
the accelerator. For each chassis, 300 traces of 2048 points
were taken. Figure 4 shows a comparison of the output of the
two chassis with no amplifiers enabled. The SLAC chassis
output is a little higher than that of the Fermilab chassis.
This is probably due to the 4 dB insertion loss of the coupler
in that chassis.

Figure 4 also shows the resonant buildup of energy in the
mode(s) over the train of 50 bunches. This gives an enhance-
ment of the signal since bunches are spaced less than the
damping time of the mode. For LCLS-II, the highest bunch
frequency is less than 1 MHz, with much lower frequencies
anticipated during commissioning. So it was important to
obtain some data with only a single bunch to be able to
estimate the sensitivity during commissioning.
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Figure 4: Overlay of 300 traces of CC1 data taken under
the same beam conditions with the Fermilab and SLAC
prototypes. The electron beam is 50 bunches at about
125 pC/bunch with a spacing of 333 ns.

Connection to the 8-Cavity Cryomodule

The two SLAC chassis of 4 channels each were connected
to the HOM signals coming from the 8-cavity cryomodule
(CM) at FAST, which is several meters downstream of the
capture cavities [6—8]. Figure 5 shows the configuration with
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the two SLAC chassis connected to all eight up(down)stream
HOM probes of the CM. Two chassis of a newer design of the
Fermilab prototype were connected to the cavity 1 (c1) and
cavity 8 (c8) down(up)stream HOMs. A vertical steering
magnet V125, which is 4 m upstream of the CM, was used
to vary the trajectory for different sets of measurements.

1.75 GHz
2.50 GHz
3.25 GHz
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Acnet
Board 1

FNAL#2

Acnet
Board 0

Figure 5: Block diagram of the cryomodule with its con-
nections to the Fermilab and SLAC chassis and Fermilab’s
ACNET data acquisition system.

An important test for the SLAC prototype is its ability to
detect offsets with a single bunch of 10 pC. Figure 6 shows
the signals obtained from all sixteen HOM probes with a
single 10 pC bunch without changing the accelerator magnet
settings. This data was taken after roughly minimizing the
upstream signals by hand adjustment of steering magnet
settings. The estimated beam offset is about 1 mm. For this
measurement, both cascaded amplifiers are enabled in all
channels with no added attenuation.
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Figure 6: Output of the SLAC chassis with a single bunch of
10 pC and the beam approximately on axis (see text). Both
cascaded amplifiers are enabled in all channels.

With higher bunch charge, data was also taken of the
signal from the CM HOMs versus the setting of an upstream
steering magnet. The electron beam has an energy of 25 MeV
and the V125 steering magnet is about 4 meters upstream
of the CM. With a current of 1 A, V125 gives an angle of
2 mrad, for a displacement of about 8 mm at the entrance to
the CM (the cavity 1 end). Figure 7 shows the peak HOM
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signal for each cavity versus magnet current with a 50 bunch
train of 400 pC/bunch. One amplifier is enabled in each
channel and for larger beam offsets, 10 dB of attenuation
was inserted to keep the signal on scale. The attenuated data
was scaled to make it consistent with the other data in the
set.

The signal from c1 is about 800 mV for a 1.0 A setting,
which should correspond to a displacement at c1 of about
8 mm. So the rough calibration is 100 mV/mm at 400 pC.
The minimum of the c1 signal in Fig. 7 is about 125 mV, or
a little more than 1 mm displacement. At 10 pC this would
be 2.5 mV/mm, but the second amplifier (23 dB) could be
enabled at this low bunch charge to give 35 mV/mm.
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Figure 7: Plot of the SLAC chassis output versus steering
magnet current with one amplifier enabled in each channel.
The electron beam was 50 bunches at 400 pC/bunch.

SUMMARY AND FUTURE WORK

The SLAC HOM measurement front end hardware has
been tested with electron beam at Fermilab’s FAST facility.
With two cascaded amplifiers, data show a usable signal
with a single bunch of 10 pC and beam offsets of roughly
1 mm. The controllable attenuator allows finer control of
the signal level — 31 dB in 0.5 dB steps. The combination
of amplifiers and attenuator gives a sensitivity that can be
varied over 77 dB.

The analog front ends used in these experiments need
data acquisition for their use at SLAC. The present plan is
to use a digitizer and FPGA for HOM measurement and for
remote control of the amplifiers and attenuators. Data from
the experiments at Fermilab are also being used at SLAC
for ongoing work in machine learning [9].
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