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Abstract
Electron diffraction is among the most complex and in-

fluential inventions of the last century and contributes to
research in many areas of physics and engineering. Not
only does it aid in problems like materials and plasma re-
search, electron diffraction systems like the MeV ultrafast
electron diffraction (MUED) instrument at the Brookhaven
National Lab also present opportunities to explore and im-
plement surrogate modeling methods using artificial intelli-
gence/machine learning/deep learning algorithms. Running
the MUED system requires extended periods of uninter-
rupted runtime, skilled operators, and many varying parame-
ters that depend on the desired output. These problems lend
themselves to techniques based on neural networks(NNs),
which are suited to modeling, system controls, and analy-
sis of time-varying/multi-parameter systems. NNs can be
deployed in model-based control areas and can be used sim-
ulate control designs, planned experiments, and to simulate
employment of new components. Surrogate models based
on NNs provide fast and accurate results, ideal for real-time
control systems during continuous operation and may be
used to identify irregular beam behavior as they develop.

INTRODUCTION
MeV Ultrafast Electron Diffraction (MUED) [1, 2] is a

class of high-energy electron diffraction instrument em-
ployed for novel materials characterization. The MUED
system leverages the large interaction cross-section between
electrons and matter to yield diffraction patterns of high spa-
tial resolution that can resolve fine structural details. How-
ever, as with all complex instruments, MUED systems re-
quire downtime between experiments for beam alignment,
operator input, data processing, diagnostics, and other typi-
cal procedural delays.

Surrogate modeling can be used to cut down some of these
delays. Whenever a diagnostic would be inconvenient or
destructive, having a similar or nearly equivalent system to
apply it to instead can save a lot of time. Similar sentiments
towards beamline stabilization can also be made. Machine
learning (ML) offers a variety of models in this vein, in-
cluding deep neural networks (DNNs). DNNs are already
capable of acting as learning surrogate models [3] and show

∗ dmonk@unm.edu

promise towards solving a wide array of inverse problems.
Because DNNs are already employed to make accurate pre-
dictions toward electromagnetic and optical problems [4],
this also makes them good candidates for choosing good
beam parameters for a desired output in real time.

SIMULATIONS
One of our interests is to build a surrogate model of

MUED that supports control tasks and optimization of the
beam, which should result in increased resolution of the
experiment. A surrogate model can be used effectively dur-
ing online operation because it has been pre-trained with
previous available experimental data and with data from
simulations. We need to get sufficient data in order to train
an accurate model. Experimental dedicated runs for data
production may be scarce, or impact the user’s schedule, and
are in general expensive. This is our motivation to look into
detailed computer models of MUED as a way to populate
the training data set that will lead to the surrogate model.

Figure 1: Pass-band modes of the 1.6 cell RF gun of MUED.
Left is the 0-mode and right is the 𝜋 mode.

We are using VSim [5], an electromagnetic and Particle-
in-Cell software developed by Tech-X, to create an accurate
model of the electrodynamically active regions of MUED,
like the radio-frequency gun and the compensating solenoid,
and all the way to the sample location. For example, Fig. 1
shows the longitudinal electric field corresponding to the two
pass-band modes of the MUED RF gun as modeled in VSim:
in the 0-mode, the two cavities are on phase while on 𝜋-
mode, which is the mode of operation, the cells are off phase.
Note the fractional cell is required so that the electric field
is maximized at the location of the photo-cathode, ensuring
the efficient extraction of electrons.
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VSim scales really well into High Performance Computing
in similar beam simulations [6], which will be very important
when we get to the data production phase for the surrogate
model, since using our allocation at the Argonne Leadership
Computing Facility will enable us to create a big ensemble
of MUED simulations with different operating conditions in
a short amount of time.

EXPERIMENTAL
The Accelerator Test Facility at Brookhaven National Lab

houses the MUED instrument, which has the system param-
eters shown in Table 1. Its 1.6-cell RF gun operates at a
resonance frequency of 2.856 GHz with a maximum repeti-
tion rate of 48 Hz to produce 2-5 MeV electrons. To generate
these electrons, a frequency-tripled Ti:Sapphire drive laser
producing near-infrared pulses is directed towards a copper
cathode, which emits femtosecond electron pulses by way
of the photoelectric effect. This is followed by the sample
chamber, an RF deflecting cavity, and then a high efficiency
detector four meters down the line whereupon the diffraction
pattern is imaged with a phosphor screen.

Table 1: MUED Source Paramaters for Typical Operation

Beam energy: 3 MeV

Number of electrons per pulse: 1.25 × 106

Temporal resolution: 180 fs

Beam diameter: 100 - 300 µm

Repetition rate: 5 - 48 Hz

Number of electrons per sec per µm2: 88 - 880

DISCUSSION
The COVID-19 pandemic has delayed experiments on the

MUED instrument. However, because a model of it is being
developed in VSim, we may still be able to move forward with
the DNN-based surrogate model. While the VSim model is
currently mostly used to characterize the electromagnetic
modes of the RF gun’s accelerating cavity, we will also be
able to use it to generate simulated data in order to pre-train
the DNN-based surrogate. Once experiments on the MUED
instrument begin again, we would then be able to just refine
our DNN with real data from only a few experiments [7], but
it may require significantly more; in this case, data gathered
from normal operation of the instrument by other users can
be used to supplement the surrogate’s training data. This
DNN-based surrogate model will serve as a testbed for total
ML-based controls of the MUED instrument, enabling start-

up, initialization, and operations with minimial operator
intervention and in situ corrections and analysis in order
to increase experimental throughput and the rate of novel
materials discovery.
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