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Abstract
Particle accelerators must achieve certain beam quality

objectives for use in different experiments. Usually, opti-
mizing certain beam objectives comes at the expense of
others. Additionally, there are many input parameters and a
limited number of diagnostics. Therefore, accelerator tun-
ing becomes a multi-objective optimization problem with a
limited number of observations. Multi-objective Bayesian
optimization was recently proposed as an efficient method to
find the Pareto front for an online accelerator tuning problem
with reduced number of observations. In order to experimen-
tally test the multi-objective Bayesian optimization method,
a novel accelerator diagnostic is being designed to measure
multiple beam quality metrics of an electron beam at the
Argonne Wakefield Accelerator Facility. Here, we present
a design consisting in a pepper-pot mask, a dipole magnet
and a scintillation screen, which allows a simultaneous mea-
surement of the electron beam energy spread and vertical
emittance. Additionally, a surrogate model for the verti-
cal emittance was constructed with only 60 observations
and without prior knowledge of the objective function nor
diagnostics constraints.

INTRODUCTION
Particle accelerators need to be tuned to achieve beam

quality objectives. This tuning must be done continuously
during operation due to variable external factors and the large
number of components present in the accelerator. Generally,
optimizing certain beam parameters comes at the expense
of others. Additionally, there is usually a limited number
of diagnostics. Thus, the online tuning becomes a multi-
objective optimization problem which must be solved in real
time and with few observations.

Various attempts to implement optimization algorithms
have been made in order to solve this problem, such as
Bayesian optimization with a Gaussian process surrogate
model [1]. In this algorithm, the surrogate model predicts the
objective function and the model is updated iteratively, guid-
ing the optimization search. This implementation has been
shown to efficiently solve the optimization problem in ac-
celerators with a high-dimensional input space and reduced
number of observations [2, 3]. Nevertheless, this method
has only been implemented for single-objective optimization
problems.
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Multi-objective optimization algorithms attempt to find
the Pareto front, which is the set of non-dominated objectives.
One example is the genetic optimization algorithm, which
has been successfully used to optimize multiple beamline
parameters [4]. These algorithms use parallel computing to
evaluate multiple input-space combinations simultaneously,
so they are useful for offline optimization problems where it
is possible to run multiple beamline simulations at the same
time. However, this methodology would take too much time
for online tuning. The reason is that, when the accelerator is
in operation, the measurement of the objectives can only be
made one at a time for each single set of input parameters.

Multi-Objective Bayesian Optimization (MOBO) [5] ex-
tends the single-objective Bayesian optimization to multi-
objective optimization by using a surrogate model for each
objective function. MOBO has been used for online opti-
mization in simulations, and it has been shown to reduce the
number of observations needed to converge to a Pareto front
by at least an order of magnitude when compared to genetic
algorithms such as NSGA-II [6].

In order to test MOBO for accelerator tuning experimen-
tally, we propose a beam diagnostics design at the Argonne
Wakefield Accelerator Facility which allows the simultane-
ous measurement of vertical emittance and energy spread.
We also show the surrogate model obtained for the vertical
emittance, as well as the use of Bayesian statistics to over-
come diagnostics constraints challenges when exploring the
parameter space.

METHODS
The Argonne Wakefield Accelerator Facility (AWA) can

produce electron beams with a wide range of charges and
energies [7]. We used the RF photocathode gun and RF
accelerating cavities section for our experiment, and fixed
the charge to −5 nC, the initial bunch length to 6 ps and the
beam energy after the last linac cavity to roughly 42 MeV.
Figure 1 shows a cartoon of the photoinjector and linac
cavities section of the AWA facility, as well as the free pa-
rameters we use: gun phase (𝜙1), first linac cavity phase
(𝜙2), focusing solenoid current (𝐼1), and matching solenoid
current (𝐼2). The objective functions are the geometrical
vertical emittance (𝜀𝑦) and the energy spread (𝑑𝐸).

Figure 2 shows the beam diagnostics proposed to mea-
sure 𝜀𝑦 and 𝑑𝐸 simultaneously. It consists in a pepper-pot
mask with holes on the 𝑦-axis, a dipole magnet and two
YAG screens. The first YAG screen is used to measure the
reference beam size on the 𝑥-axis (𝜎𝛽) when the dipole is
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Figure 1: Scheme of the AWA photoinjector and linac cavi-
ties section. Reproduced with modifications from [8].

off. The second YAG screen is used to measure both the
vertical emittance and the energy spread when the dipole is
on. The lower energy particles will be deflected more than
the higher energy ones, so the 𝑥 beam size in the second
YAG screen is correlated with the energy spread:

𝜎𝑥 = 𝜎𝛽 + 𝜂 𝑑𝐸. (1)
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Figure 2: Proposed beam diagnostics design. The dipole is
turned off when using the first YAG screen to measure the
reference beam size on the x direction (𝜎𝛽). Consequently,
the dipole is turned on to perform the vertical emittance (𝜀𝑦)
and energy spread (𝑑𝐸) measurements on the second YAG
screen.

The geometrical vertical emittance at the position of the
mask is calculated by:

𝜀𝑦 = √⟨𝑦2⟩⟨𝑦′2⟩ − ⟨𝑦𝑦′⟩2, (2)

whose parameters can be estimated with a YAG screen lo-
cated a distance 𝐿 away from the mask and by capturing
the image with a CCD camera. Figure 3 (a) shows a car-
toon of the 𝑦′ − 𝑦 phase space at the mask location, and
Fig. 3 (c) shows the beamlets projections to the screen. Let
𝑦𝑖 be the position of the 𝑖th hole in the mask, and let 𝑎𝑖, 𝑏𝑖,
and 𝑐𝑖 be the beamlets’ intesities, peak positions on the 𝑦-
axis, and standard deviation on the 𝑦-axis respectively. Let
𝑦′

𝑖 = (𝑏𝑖 − 𝑦𝑖)/𝐿 and 𝜎′
𝑖 = 𝑐𝑖/𝐿. Then we can estimate the

following 𝑦′ − 𝑦 phase space values [9, 10]:

⟨𝑦⟩ =
∑𝑖 𝑎𝑖𝑦𝑖
∑𝑖 𝑎𝑖

, (3)

⟨𝑦2⟩ =
∑𝑖 𝑎𝑖(𝑦𝑖 − ⟨𝑦⟩)2

∑𝑖 𝑎𝑖
, (4)

⟨𝑦′⟩ =
∑𝑖 𝑎𝑖𝑦′

𝑖
∑𝑖 𝑎𝑖

, (5)

⟨𝑦′2⟩ =
∑𝑖 𝑎𝑖𝜎′

𝑖
∑𝑖 𝑎𝑖

, (6)

⟨𝑦𝑦′⟩ =
∑𝑖 𝑎𝑖𝑦𝑖𝑦′

∑𝑖 𝑎𝑖
− ⟨𝑦⟩⟨𝑦′⟩. (7)

Figure 3: Emittance diagnostics used for the emittance sur-
rogate model. (a) 𝑦′ − 𝑦 phase space cartoon. (b) Multi-slit
mask design for emittance-only measurement (not to scale).
There are 25 slits with width of 50 µm separated 2.00 mm.
(c) beamlets on screen: for the slit located at the mask at 𝑦𝑖,
the corresponding beamlet has a peak position at 𝑏𝑖 and a
standard deviation of 𝑐𝑖 on the 𝑦-axis.

As a first step to construct a surrogate model for one of the
objective functions, we used a multi-slit mask which allows
vertical emittance measurements only. Figure 3 (b) shows
the mask design that has been used to construct the vertical
emittance surrogate model.

RESULTS
Parameter Space Exploration

Exploring the parameter space usually costs time since the
diagnostics introduces technical constraints for having valid
measurements. The constraints for a valid emittance mea-
surements are: the number of blobs at the screen should be
more than three, the blobs cannot touch, and there should not
be blobs on the edges or outside the screen. Using Bayesian
exploration and a quadrupole magnet as an auxiliary param-
eter which doesn’t change the emittance, the algorithm was
able to find a region in the parameter space which led to valid
measurements. Figure 4 shows both random and Bayesian
exploration sampling in the parameter space defined by the
two solenoid currents and the auxiliary parameter given by
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the quadrupole strength. Bayesian exploration allowed to
find the region inside parameter space which lead to valid
measurements and thus, it samples the valid region with
higher density. Additionally, the validity of the measure-
ments was not affected by the quadrupole magnet strength.

Figure 4: Observations in the solenoids parameter subspace
with a quadrupole magnet strength as an auxiliary parameter
(DQ5). Blue points are random samples. Green and or-
ange points are samples obtained with Bayesian exploration
which led to successful and unsuccessful measurements re-
spectively. All three parameters are normalized in a zero to
ten scale.

Emittance Surrogate Model
A Gaussian process surrogate model [6] was generated

for the vertical emittance after 60 observations (see Fig. 5).
The model predicts the mean and uncertainty at quadrupole
strength of zero. Note that the algorithm was able to find a
length-scale in both axes of the parameter subspace. Also,
the model was constructed without prior knowledge of the
objective function.

Figure 5: Gaussian process surrogate model for vertical
emittance mean (left) and uncertainty (right) as a function
of the solenoid currents parameter subspace. Parameters
are normalized in a zero to ten scale, and the geometrical
emittance mean and uncertainty are in m rad.

CONCLUSION
In this paper, we proposed a beam diagnostics design

to measure vertical emittance and energy spread simulta-

neously at the AWA facility. A multi-slit mask has been
installed in the beamline and a Gaussian process surrogate
model for the emittance was constructed with only 60 ob-
servations and without prior knowledge of the emittance
behaviour. Furthermore, Bayesian exploration was shown
to be useful in exploring the parameter space, which was
constrained by technical requirements of the diagnostics.

We are currently planing the next stage of the experiment,
which consists in constructing a surrogate model for the
energy spread and run the MOBO algorithm at the AWA
Facility.
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