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Abstract
Low emittance electron beams are of high importance at

facilities like the Linac Coherent Light Source II (LCLS-II)
at SLAC. Emittance dilution effects due to off-axis beam
transport for a TESLA-type cryomodule (CM) have been
shown at the Fermilab Accelerator Science and Technology
(FAST) facility. The results showed the correlation between
the electron beam-induced cavity high-order modes (HOMs)
and bunch-by-bunch centroid slewing and oscillation down-
stream of the CM. Mitigation of emittance dilution can be
achieved by reducing the HOM signals and the standard de-
viation in the bunch-by-bunch beam positions downstream
of the CM. Here we present a Machine Learning (ML) based
optimization and model construction for HOM signal level
reduction using Neural Networks (NN). To gather training
data we performed experiments using 50 bunch electron
beams with charges up to 600 pC/b. We measured HOM
signals of all cavities and beam position with a set of BPMs
downstream of the CM. The beam trajectory was changed
using V/H125 corrector set located upstream of the CM. The
preliminary results presented here will inform the LCLS-II
injector commissioning and will serve as a prototype for
HOM reduction and emittance preservation.

INTRODUCTION
Low emittance electron beams are of high importance in

accelerating structures at large facilities like the LCLS-II at
SLAC. With a set of experiments performed at FAST, it was
shown that off-axis beam transport may result in emittance
dilution due to transverse long-range (LRW) and short-range
wakefields (SRW) [1, 2]. A set of LRWs known as Higher-
Order Modes (HOM), which are cavity resonant frequen-
cies higher than the fundamental 1.3 GHz, have amplitudes
that are proportional to beam offset, charge and coupling
impedance (R/Q). Therefore, reducing HOM signals may
help to mitigate emittance dilution effects.

In order to further investigate the relation between emit-
tance dilution, HOMs and beam offset, and to inform the
LCLS-II injector commissioning plans, a new set of experi-
ments were performed at FAST. This time, two 4-channel
HOM detectors were used to measure signals at the upstream
(US) and downstream (DS) couplers of 8 superconducting
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RF (SRF) cavities inside a Tesla-type CM [3]. The new
results showed a correlation between the electron beam-
induced cavity HOM signal levels and bunch-by-bunch cen-
troid slewing and oscillation at 11 BPMS located down-
stream of the CM [4]. Thus, by reducing HOM signals and
bunch-by-bunch centroid slewing downstream of the CM,
one can mitigate emittance dilution. In principle, a NN
control policy could be used for this purpose.

ML is undergoing a renaissance in a wide variety of ap-
plications due to larger computational resources, advanced
theoretical models, and successful practical applications
during the last years. Particle accelerators are part of this
resurgence of ML by developing new system modelling tech-
niques, virtual instrumentation and diagnostics, tuning and
control schemes, surrogate models, among others [5]. In
this paper, we evaluate a NN model for bunch-by-bunch cen-
troid slewing prediction, and its application in a ML based
optimization and model construction for HOM signal level
reduction and emittance preservation.

EXPERIMENTAL SETUP AND DATA
ACQUISITION

The Hardware
The Integrable Optics Test Accelerator (IOTA) at the

FAST facility has a unique configuration of two TESLA-
type SRF cavities after a photocatode RF gun, followed by
an 8-cavity CM, like the ones used for LCLS-II at SLAC.
Four meters upstream the CM, there is a set of horizontal
and vertical correctors (H/V125) used to steer the electron
beam and there are 11 BPMs downstream the CM over a
80 m length (Fig. 1).

Two 4-channel chassis were built to detect the magnitude
of the HOMs at the US and DS couplers of each SRF cav-
ity. Each channel has a 1.3 GHz notch filter to reduce the
nominal resonant frequency, a bandpass filter centered at
1.75 GHz with 300 MHz bandwidth to emphasize the main
TE111 HOM dipole modes, and a Schottky diode for HOM
detection. More details are found in [3].

The Experiment
An electron beam of 50 bunches and 3 MHz bunch repeti-

tion rate is produced at the RF gun with an energy <5 MeV.
This bunch pattern repeats at 1 Hz; each repetition is called
a ”shot”. After the two capture cavities (CC1 and CC2), the
25 MeV beam is transported to and through the CM with an
exit energy of 100 MeV. HOM waveforms and BPM data
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Figure 1: Schematic of the FAST/IOTA beamline layout.

are capture while steering the beam using the H/V125 cor-
rector currents, for different values of bunch charge. First, a
”reference” trajectory is found by minimizing as many US
HOM signals as possible by steering the beam. Then, we
capture HOM and BPM data for this reference trajectory
and for several values of bunch charge. We then repeat the
previous measurements for values of the corrector currents
from -1 A to 1 A in 0.5 A steps.

The Data
An US HOM waveform example for all 8 cavities is shown

in Fig. 2. Although several features can be extracted from
each of these waveforms (rising time, oscillation frequency,
decaying time), we decided to use the peak value as a repre-
sentative number. Averaging the peak value over 300 shots,
the relation between V125 corrector current and HOM signal
peaks at 400 pC/b and 50 bunches is shown in Fig. 3.

The evolution of the relative beam centroid position as
measured by B441PV (a BPM located DS the CM) over a
250 pC/b beam with 50 bunches is shown in Fig. 4 for multi-
ple values of V125 corrector current and H125 at reference.
A clear slew is present in the centroid position measure-
ments, which is proportional to the V125 corrector current
offset. With these results we can see how both HOM signal
peaks and centroid slews are proportional to the corrector
current offset (i.e. beam off-axis). In principle, we can train
a NN to predict the centroid slew based on the HOM signal
peaks.

NEURAL NETWORK MODEL
A NN was trained to predict the centroid motion’s stan-

dard deviation as measured by multiple BPMs (B440PV/PH
and B441PV/PH) over beams of 50 bunches, for several val-
ues of bunch charge and H/V125 corrector currents. The
inputs to the NN are the US and DS HOM signal peaks as
measured by the SLAC HOM detectors. The training data in-
cludes measurements for beam charges of 200 and 100 pC/b,
H/V125 corrector currents from -1.0 A to +1.0 A from the
reference current, with 0.5 A current steps. At each beam
configuration, signals for 300 shots were captured.

Figure 2: US HOM waveforms with 125 pC/b, 50 bunches,
V125=+1.0 A and H125 at reference value.

Figure 3: HOM peak signals vs V125 corrector current
values for different values of V125 with 400 pC/b, 50 b and
H125 at reference value.

The NN architecture consists of a normalization layer fol-
lowed by 6 hidden layers (four layers of 100 nodes followed
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Figure 4: Bunch by bunch centroid slew in B441PV for
different values of V125 corrector current offset, with 125
pC/b, 50 bunches and H125 at reference value.

by two layers of 64 nodes). Each hidden layer uses the hy-
perbolic tangent activation function. A 80-20 split was used
for the training and test datasets. From the training dateset,
20% was used for validation. Early stop was implemented.

TRAINING RESULTS
The performance of the model was evaluated in terms of

the mean absolute error (MAE) and the mean absolute per-
centage error (MAPE). Computing resources of the SLAC
Shared Scientific Data Facility (SDF) were used to perform
the NN training [6]. The results are shown in Table 1. The
accuracy of the prediction of the standard deviation of the
bunch by bunch centroid slew is about 8% for all BPMs.
A representative histogram of the test dataset MAPE for
B441PV is shown in Fig. 5. The performance of the NN
model for predictions of B441PV standard deviation over
the test dataset is shown in Fig. 6.

The groups in Fig. 5 represent BPM measurements over
the same beam and corrector configuration (i.e. fixed bunch
charge and H/V125 corrector currents). The NN model is
capable of predicting the average bunch by bunch centroid
slew’s standard deviation for a given beam and corrector
configuration. However, it is not accurate when predicting
the exact value. This may be related to the noise on the BPM
measurements and the low charge. Having the average bunch
by bunch centroid slew’s standard deviation might be enough
when designing a controller based on this predictions.

CONCLUSIONS AND FUTURE WORK
Data with the unprecedented correlation between beam

steering, US and DS HOM signals and BPM measurements
showing bunch by bunch centroid slew after a Tesla-type
CM at FAST has been used to train a NN model. Results
show that the NN model is capable of predicting centroid
slew’s standard deviation with about 8% accuracy. These

Table 1: NN Performance Results

BPM Train Val Test Test
MAE MAE MAE MAPE

B440PV 41.42 41.98 42.82 9.76
B440PH 29.82 30.46 30.54 8.2
B441PV 18.98 19.26 19.5 8.4
B441PH 20.89 21.43 21.62 8.44

Figure 5: Histogram of prediction errors.

Figure 6: NN model predictions and real values for B441PV.

are encouraging results towards developing a ML-based
controller for HOM reduction and emittance preservation
for the LCLS-II project at SLAC. Our next steps include the
development of the controller using an inverse model of the
NN developed in this research, i.e. a NN that can predict
HOM signals for a given beam offset. We also plan to explore
adaptive learning, Gaussian Processes and Gaussian Process
based Bayesian optimization.
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