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Abstract 
In the vicinity of the linear coupling resonance where the 

working point of the collider is positioned, we study the 
effect of nonlinear coupling resonances on the single-par-
ticle phase space, beam sizes and the waveform of coherent 
beam motion. The latter is interesting for diagnostics of the 
nonlinear dynamics. 

INTRODUCTION 
Linear beam dynamic in accelerators is well studied, but 

in the modern colliders nonlinear effects are gaining im-
portance. The example of such an innovative accelerator is 
the e+e- collider VEPP-2000 [1], which is designed to op-
erate with round colliding beams and its working point is 
located on the main difference resonance. 

It is easy to see from the basic resonance equation 
 𝑙𝜈௫ + 𝑚𝜈௬ = 𝑛,  

where l, m, n are integer, that such a working point actu-
ally stands not only on a single (1-1) resonance 
(𝑙 = 1,𝑚 = −1), but also on an infinite number of nonlin-
ear coupling resonances, such as (2-2), (3-3) and so on. 
These resonances result in beam dynamics whose details 
and consequences are not well understood.  

The operating mode of VEPP-2000 can be called “strong 
coupling”, because two transverse dimensions whose tunes 
are very close are effectively mixed and form the betatron 
normal modes. In that situation, any perturbation in the ac-
celerator lattice can excite two-dimensional resonances 
mentioned above. So it is very important to get insights into 
that system dynamics. 

In this article the contributions of nonlinearities to cou-
pled betatron oscillation are considered with simultaneous 
action of (1-1) and (2-2) resonances in the VEPP-2000 col-
lider. 

Primarily, the general Hamiltonian is derived in the var-
iables of linear eigenvectors, then this Hamiltonian is re-
duced to one-dimensional difference Hamiltonian and 
some phase portraits are plotted. Further, the centre-of-
charge motion, so as their spectra, of betatron coupled sys-
tem are investigated and modelled. In the end, predictions 
are compared with observable spectra, and the main find-
ings are summarized in conclusion. 

NONLINEAR HAMILTONIAN 
 The 4-dimentional Floquet vectors, written in terms of 

Twiss parameters of coupling-free optics, can be intro-
duced for (1-1) system: 

 

𝑌 =
⎣⎢⎢
⎢⎢⎢
⎡ eቀఞೣାଶగрезమ ቁ𝑤௫cos𝛾eቀఞೣାଶగрезమ ቁ ቀ𝑤௫ᇱ + ୧௪ೣቁ cos𝛾eቀఞିଶగрезమ ିఈቁ 𝑤௬ sin𝛾eቀఞିଶగрезమ ିఈቁ ൬𝑤௬ᇱ + ୧௪൰ sin𝛾⎦⎥⎥

⎥⎥⎥
⎤
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⎣⎢⎢
⎢⎢⎢
⎡ −eቀఞೣାଶగрезమ ାఈቁ𝑤௫sin𝛾−eቀఞೣାଶగрезమ ାఈቁ(𝑤௫ᇱ + ୧௪ೣ)sin𝛾eቀఞିଶగрезమ ቁ𝑤௬cos𝛾eቀఞିଶగрезమ ቁ(𝑤௬ᇱ + ୧௪)cos𝛾 ⎦⎥⎥
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⎤
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They are called “normal oscillations Floquet vectors”, 
and the general solution is the linear sum of them (with 
complex conjugation so that the physical variables are 
real). 

Here 𝑛 =  𝑠/2𝜋𝑅ത is dimensionless azimuth, 𝑤௫ = ඥ𝛽௫,𝑤௬ = ඥ𝛽௬, 𝜂 = 𝜈 − 𝜈 is the difference of 
mode tunes and coupling angle 𝛾 introduced so that 𝜂 = ඥ𝛿ଶ + |𝐶|ଶ,𝛿 =  𝜂 cos 2𝛾 ,𝐶 = 𝜂 sin 2𝛾 𝑒ఈ, 𝐶 is the 
resonance (1-1) amplitude, or the coupling coefficient. 
Basic frequencies obey the equality 𝜈௫ − 𝜈௬ = 𝑛௦ + 𝛿. In 
numerical simulations the dimensionless azimuth 𝑛 is 
treated as integer variable, meaning the revolution number. 

The higher resonance is, the less it’s effect, so here we 
proceed only with (2-2) resonance. It is corresponding to 
the second order Hamiltonian in action, and to fourth order 
in coordinates. These terms are generated by: 

 quadrupole fringes, 
 solenoid fringes, 
 colliding beam 
 general octupole perturbations. 

Below only free betatron oscillations with octupole per-
turbation are considered, other sources can be treated in the 
similar way. Name “unperturbed” refers to the system with 
skew-quadrupole perturbation. In this paper, the impact of 
mentioned (2-2) sources is considered as perturbation to 
unperturbed system (1-1), which solution is well-known, 
then the new eigenvectors are the linear combination of un-
perturbed ones: 

 

𝐴መ = 𝐴 𝑒 ఝೌ; 𝐵 = 𝐵 𝑒 ఝ್𝑥 = ଵଶ 𝐴 𝑎ଵ൫𝑒(టೌାఝೌ)൯ + ଵଶ 𝐵൫𝑏ଵ𝑒(ట್ାఝ್)൯ + c. c𝑦 = ଵଶ 𝐴 ൫𝑎ଷ 𝑒(టೌାఝೌ)൯+ ଵଶ 𝐵 𝑏ଷ ൫𝑒(ట್ାఝ್)൯ + c. c (1) 
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Here 𝑎 and 𝑏 are the normal eigenvectors components 
of unperturbed system, 𝜓 are their betatron phases; 𝐴,𝐵 
are the slow amplitudes, 𝜑,𝜑 are the slow phases, that 
emerge with perturbation. 

Coefficients in this linear decomposition conform with 
equations [2]: 
 Аᇱ = −𝑖 𝑌∗𝑆𝐺;  Вᇱ = −𝑖 𝑌∗𝑆𝐺, (2) 

where 𝑆 is the unit symplectic matrix, 𝐺 is the vector of 
perturbations in the equations of motion. 

Writing down the obtained equations and switching to 
the difference variables 
(Ф = 2𝜋𝑛 𝜂 + 𝜑 − 𝜑, 𝐽 = 𝐽 − 𝐽, 𝐼𝐼 = 𝐽 + 𝐽), the de-
sired Hamiltonian is obtained after integrating over the pe-
riod and fast phases averaging: 𝐻 = ଵଶ ൫(𝐽ଶ + 𝐼𝐼ଶ)(𝑝 + 𝑟) + (𝑝 − 𝑟)(2𝐼𝐼 𝐽)൯ +𝑞(𝐼𝐼ଶ − 𝐽ଶ) + 4𝜋𝐽𝜂 + 2𝐼𝐼𝜈 + 𝑓ଶ(𝐼𝐼ଶ − 𝐽ଶ) cos(2Φ)+ඥ𝐼𝐼ଶ − 𝐽ଶ൫𝑘ଵଵ(𝐽 + 𝐼𝐼) + 𝑘ଵଶ(𝐼𝐼 − 𝐽)൯ cos(α + Φ)  (3) 

The equations for the new variables can be obtained 
from that Hamiltonian: 
 𝐽ᇱ = − ௗுௗ ,Φᇱ = ௗுௗ ,Φୱ୳୫ᇱ = ௗுௗூூ , 𝐼𝐼ᇱ = 0  

DIFFERENCE VARIABLES 
In the difference variables the problem is one-dimen-

sional, which leads to the possibility of 2D-phase space 
plotting and, therefore, allows one to analyze the system 
qualitatively. That analysis shows some critical condition, 
which lower estimation is expressed as 𝑐 ≡ |మ| ூூఎ = 1 (so 
as with substitution 𝑓ଶ → 𝑘ଵଵ,𝑘ଵଶ). At this point the phase 
portrait is altered and several additional fixed points ap-
pear. 

The linear resonance moves apart the betatron frequen-
cies. So, on the VEPP-2000, 𝜂 is usually not less than 
0,001.  This fact, together with the estimates given below, 
makes it possible to assert that at the values of 𝑓ଶ,𝑘ଵଵ,𝑘ଵଶ 
existing at VEPP-2000, such additional autophasing do-
mains and fixed points are either not formed or their depths 
are not large. In any case, this resulting in a small redistri-
bution of particles, but non-roundness up to ~20% has al-
most no effect on the important parameters of the collider, 
as was found experimentally at the VEPP-2000. 

In total, for a given 𝜂, the existence of 0 to 4 fixed points 
is possible, with no more than 3 centers and no more than 
1 saddle. 

Due to the preservation of the sum action, it is conven-
ient to plot phase trajectories on a 𝐼𝐼 radius sphere. In these 
portraits the 𝐼/𝐼𝐼 ratio is plotted along the z-axis, and the 
polar angle represents the difference phase Ф. Several typ-
ical cases of such portraits are shown in Fig. 1: the sym-
metric cases with 2 and 3 fixed points, and general non-
symmetric case with saddle point. 𝛼 = 0 in each portrait 
for ease of observation. 

Also the phase portraits without (a), with slight (b), and 
with large (c) nonlinearities are presented in Fig. 2 in order 
to show the complications caused by resonances. 

 
Figure 1: Phase portraits of free betatron oscillations in 
1-1+2-2 system. 

a) b) c)  
Figure 2: Phase portraits without (a) and with a growing (b, 
c) nonlinearities. 

SIGNAL MODELING 
The presence of the nonlinearities described above is in-

dicated by the decoherence in the signals from BPMs – the 
beam dipole moment disappears after ~ 1000 revolutions. 
The decoherence theory is well described in [3, 4] for un-
coupled oscillations, and it is applicable to mode signals. 

Assuming that nonlinearities strength is small 
(𝑐 = |మ| ூூఎ ≪ 1), we obtain expressions for phases 𝜑 and 𝜑 in the first order of smallness for Hamiltonian (3): 
 𝜑(𝑛) = (𝑞 𝑏ଶଶ + 𝑝 𝑏ଵଶ) 𝑛,   𝜑(𝑛) = (𝑞 𝑏ଵଶ + 𝑟 𝑏ଶଶ) 𝑛  

 

Where 𝑏ଵ = ඥ2𝐽തതതതതതത,𝑏ଶ = ඥ2𝐽തതതതതതത – average oscillation am-
plitudes. Resonances appear only in the second order, so in 
the current situation 𝐴,𝐵 = 𝑐𝑜𝑛𝑠𝑡. 

The comparison with BPM data reveals that the con-
stant-nonlinearity coefficients are not small, 𝑝, 𝑞, 𝑟 ~𝜂/𝐼𝐼 
in order of magnitude. Assuming that all nonlinear coeffi-
cients in Hamiltonian are of the same order, we can con-
clude, that coefficient 𝑐 is also not small in general case, 
and the system is approximately on the verge of additional 
fixed points emergence. One of the modeled BPM signals 
is shown in Fig. 3. 

 
Figure 3: Betatron history modeling example. 

In the presence of 2 − 2 resonance, the actions, obvi-
ously, cease to be constants, and oscillate at the double fre-
quency 2𝜂 as well as phases. The amplitude of these oscil-
lations and frequencies shifts are proportional to 𝑐ଶ. The 
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same effect is produced by 1 − 1 resonance, exciting oscil-
lations with a single 𝜂. When passing to the observable  𝑥-𝑦 coordinates, the spectra of the modes are added with 
the weights that are the components of the vectors of nor-
mal oscillations in accordance with the linear expansion of 
the coordinates into modes. 

For different parameters, the mode frequencies are 
shifted, increasing or decreasing the distance between the 
main peaks, denoted below as 𝜂ଵ. As a result, in the Fourier 
analysis of the dipole moment oscillations, two shifted fun-
damental frequencies 𝜈௫ and 𝜈௬ are visible, and one or 
more equidistant satellites responsible for phase oscilla-
tions in the autophasing domains on single and double 𝜂ଵ. 

The series of signal modeling were made for collective 
(see Fig. 3), as well as for single particle dynamics. Simu-
lations were made based on numerical solutions of aver-
aged Hamiltonian (3) equations. Further only single parti-
cle simulations are considered due to their superior accu-
racy. 

Some results are shown in Fig. 4. Blue and red lines 
mean B and A mode tunes respectively. The spectra corre-
spond to different initial parameters on the first phase por-
trait from the Fig. 1, showed by dots. 

As was expected, the obtained Fourier spectra show sev-
eral peaks, the distance 𝜂ଵ between them depends on the 
proximity of the trajectory to the separatrix – it is inverse 
to the period of revolution around the fixed point. For tra-
jectories located far from fixed points and separatrices, the 
spectrum shows the main mode oscillations and small sat-
ellites. At fixed points, the actions and the difference 
phases are constant, and only the line with the frequency of 
the given mode is visible. When a particle trajectory passes 
close to the saddle point, the frequency of the phase oscil-
lations decreases, and the spectrum shows many lines that 
are close to each other. 

In Fig. 5 the mode oscillations near a separatrix 
(1st graph), and near a fixed point (2nd graph) are shown. It 
can be seen from them that, indeed, near the separatrix, 
many harmonics are observed. The periodicity of the enve-
lope clearly indicates that the spectrum of such oscillations 
is linear. 

 
Figure 4: Fourier spectra in terms of a-b modes with 𝑘ଵଵ 
and 𝑘ଵଶ close to each other. 

 
Figure 5: Particle mode oscillations near the separatrix. 

EXPERIMENTAL OBSERVATIONS 
Predicted spectrum patterns were prepared to compare 

with the experimental observables. Presently but a little 
time was available for this experiment. 

The measured spectra (two of them are shown in Fig. 6) 
are not rich for satellites, and comparing with the series of 
predicted spectra, it can be concluded, that the resonance 
terms are weaker or slightly above the critical values, as 
was estimated from the decoherence time, and conclusions 
from the measurements are preliminary. 

  
Figure 6: x (top), and y (bottom) spectra, observed after 
kicks on the VEPP-2000. 

Sure, more experimental data is needed to prove the res-
onance 2 − 2 influence on the particle motion on the 
VEPP-2000 collider. 

CONCLUSION 
A system with several closely spaced resonances can be 

reduced to integrable form using fast-phase averaging, so 
that its dynamics is regular. 

The simultaneous action of resonances 1-1 and 2-2 was 
considered. The phase portraits were plotted and analyzed, 
the qualitative features, auto-phasing domains and fixed 
points were found. 

Strengths of VEPP-2000 cubic nonlinearities resulting in 
the resonance term amplitude were estimated. The compar-
ison with decoherence time showed the qualitative agree-
ment of estimations and measurements. 

Extensive series of modeling the betatron motion were 
performed with different phase-space patterns. Fourier 
spectra of those oscillations were predicted in both normal-
mode and observable coordinates. 

Series of spectra from the routine operating mode of the 
collider were compared with predicted ones. The compari-
son showed a fairly good agreement, but a dedicated vali-
dation experiment is required to get more data. 
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