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Abstract
The blind source separation (BSS) method of Independent

Component Analysis (ICA) is explored as a new approach for
the reconstruction of the transfer matrix of Linear Coupling
Parameterization. ICA is a method to detangle independent
signals out of several measurements of their mixtures. In
BSS-calculations, it is usually not possible to retrieve the
mixing matrix, for the source signals, as well as the ma-
trix, are unknown. Combining the parameterization model
of D.A. Edwards and L.C. Teng with the standard ICA ap-
proach, it is though possible to retrieve the mixing matrix, as
the form of the original uncoupled motion is known. At the
same time arises the possibility to recalculate the parameters
of Edwards and Teng through a system of equations of the
one turn map components. It can be shown as a proof of
concept, that the parameters can be reconstructed up to high
accuracy for a simulated, non-perturbed signal.

LINEAR COUPLED MOTION
The evolution of a particle with coordinates (𝑥, 𝑥′, 𝑦, 𝑦′) is

determined by the transfer map of each accelerator element.
After one turn the particle encounters the same sequence
of elements, and in order to determine the dynamics, it is
relevant to relate the optics parameters to the elements of the
one turn map. If the elements are decoupled, the one turn
map is the direct product of two 2 × 2 matrices, one for each
plane. The presence of linear coupling elements, as skew
quadrupolar errors, alter the usual 2 × 2 description and the
parameterization of motion gets more complex. The one
turn map becomes a 4 × 4 matrix, whose elements provide
information on the feature of the particle motion.

PARAMETERIZATION
D.A. Edwards and L.C. Teng extended the parameteriza-

tion of Courant and Snyder [1] to a two-dimensional system
with a 4x4 matrix [2]. Using the condition of simplecticity
and Teng’s previous work about parameterization of sym-
plectic matrices to discover independent quantities [3], they
define the matrix for the transport of a particle from the
longitudinal coordinate 𝑧1 to 𝑧2 as 𝑅𝑈𝑅−1 with

𝑅 = ( 𝐼 cos 𝜙 𝐷−1 sin 𝜙
−𝐷 sin 𝜙 𝐼 cos 𝜙 ) , 𝑈 = ( 𝐴1 0

0 𝐴2
) (1)

with
𝐷 = ( 𝑎 𝑏

𝑐 𝑑 ) , (2)
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𝑎𝑑 − 𝑏𝑐 = 1 and with 𝜙 the coupling angle. Here 𝐼 is the
2 × 2 unit matrix, 𝐴1 and 𝐴2 are the corresponding Courant-
Snyder parameterizations for the respective coordinates 𝑧1
and 𝑧2 [1]:

𝐴1/2 = 𝐼 cos 𝜇1/2 + ( 𝛼1/2 𝛽1/2
−𝛾1/2 −𝛼1/2

) sin 𝜇1/2, (3)

with 𝜇1, 𝜇2 being the phase advances. Furthermore, Ed-
wards and Teng presented the approach of a canonical trans-
formation from a coupled motion ⃗𝑋 to an uncoupled motion

⃗𝑉 using the inverse of the matrix 𝑅:

⃗𝑉 = 𝑅−1 ⃗𝑋 (4)

with ⃗𝑉𝑇 = (𝑢, 𝑝𝑢, 𝑣, 𝑝𝑣) and ⃗𝑋𝑇 = (𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦). The derived
parameterization of the vector ⃗𝑉 reads

⃗𝑉 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑢
𝑝𝑢
𝑣
𝑝𝑣

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

√𝑊1𝛽1 cos(Ψ1)
−√𝑊1/𝛽1(sin Ψ1 + 𝛼1 cos Ψ1)
√𝑊2𝛽2 cos(Ψ2)
−√𝑊2/𝛽2(sin Ψ2 + 𝛼2 cos Ψ2)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(5)

where Ψ1 and Ψ2 are the phases, 𝛽1/2, 𝛼1/2 are the new
optical functions and 𝑊1/2 are the bilinear invariants

𝑊1/2 = ⃗𝑉𝑇𝑃𝑇 ( 𝐽1/2 0
0 0 ) ⃗𝑉 (6)

with P being the 4 × 4 unit symplectic matrix as definded
in [2]. We next consider Eq. (4) with 𝑅 corresponding to
one turn, hence ⃗𝑋 being the particle coordinate at each turn.

LINEAR COUPLING AND ICA
In order to describe the coupled optics, Teng’s parameters

should be retrieved from the 4 × 4 one turn map. However,
this task is difficult by measuring the coordinates of a beam
freely oscillating in an accelerator. In the following we inves-
tigate the possibility of using ICA to ease this task. ICA is a
BSS-method to reconstruct original data sets (signals) out of
multiple measurements of mixed data sets (signals), imply-
ing that the original data sets are statistically independent of
each other. The core problem of ICA can be formulated as

⃗𝑋 = 𝑀 ⃗𝑆, assuming the measured signals ⃗𝑋 to be weighted
sums of the original signals ⃗𝑋, mixed by a mixing matrix 𝑀,
such that 𝑥𝑖 = Σ𝑁

𝑗=1𝑚𝑖𝑗𝑠𝑗. Each mixed data set is then a vec-
tor whose elements are weighted sums of the elements of the
original data set, with 𝑚𝑖𝑗 being the weighting factors of the 𝑖
components. To reconstruct the independent components 𝑠𝑖,
the inverse of the mixing matrix 𝑀−1 needs to be found and
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applied to the measurable data ⃗𝑋. The canonical transforma-
tion formalism of Edwards and Teng, displayed in Eq. (4),
is similar to the basic ICA approach ⃗𝑋 = 𝑀 ⃗𝑆 ⇒ ⃗𝑆 = 𝑀−1 ⃗𝑋
with 1) ⃗𝑉 , ⃗𝑆 being the original signals; 2) 𝑅, 𝑀 being the
mixing matrices; 3) ⃗𝑋 being the mixed, respectively coupled
signals. Thus, we can treat the decoupled motion ⃗𝑉 as an
original signal ⃗𝑆 that was mixed by a matrix 𝑀 to form a
signal ⃗𝑋.

PRINCIPLES OF ICA

Requirements to the Data Set and Data Prepara-
tion

A given data set, to be processed by the ICA algorithm,
needs to meet the following requirements: 1) the original
signals must be statistically independent, 2) only one of the
original signals is allowed to be Gaussian and 3) the mixing
matrix has to be square (which is the case having a 4 × 4 ma-
trix). The condition of the source components 𝑣𝑖(𝑛) being
independent from each other is equivalent with the condition
of the autocovariance matrix 𝐶 = 𝑐𝑜𝑣( ⃗𝑣𝑛 ⃗𝑣𝑛) = 𝐸{ ⃗𝑣𝑛 ⃗𝑣𝑇

𝑛}
to be diagonal (here 𝐸{⋅} means average). The second con-
dition is due to the fact, that within the algorithm chosen [4],
non-Gaussianity is used as a measure of the independence
of the rows of the demixing matrix with a random vector.
Giving two Gaussian signals in the data set, the algorithm
would only be able to reconstruct them as one signal. Be-
fore applying the actual ICA algorithm, the data needs to be
prepared by centering and whitening. Centering is forcing
the mean to be zero by 𝑋𝑖,centered = 𝑋𝑖 − 1

𝑁 Σ𝑁
𝑛=1𝑋𝑖(𝑛)

and whitening is forcing the autocovariance matrix of the
mixed signal ⃗𝑋 to be unity. Next by using a singular value
decomposition of form ⃗𝑋 ⃗𝑋𝑇 = 𝑈𝑄𝑍∗, we use the matrices
𝑄 and 𝑍 for creating a whitening matrix 𝑀𝑤ℎ = 𝑍𝑄− 1

2 𝑍𝑇.
With that we obtain a whitened mixed signal ⃗𝑋𝑤ℎ = 𝑀𝑤ℎ ⃗𝑋
that fulfills 𝐸{ ⃗𝑋𝑤ℎ ⃗𝑋𝑤ℎ

𝑇
} = 𝐼.

Ambiguities
The method of ICA is intrinsically afflicted by limitations.

The ambiguities of the outcome are: 1) Scaling: output
values may be multiplied by a certain factor for each signal;
2) Permutation: the order of the signals in the output may
differ from that in the input, and 3) Sign: output values
may have opposite sign. Resolving these ambiguities is a
necessary step to reconstruct the matrix elements of the one
turn map and herewith the Teng parameters and is one of
the challenges of the new concept introduced in this study.

PROOF OF CONCEPT
While the mixing/demixing matrix is and remains un-

known in terms of the original ICA approach, combining
it with the theory of Edwards and Teng and knowing the
components 𝑣, 𝑝𝑣, 𝑢, 𝑝𝑢 of ⃗𝑉 from [2], we can rewrite Eq. (4)

as ⃗𝑉 = 𝑇 ⃗𝑆 with

𝑇 = ⎛⎜
⎝

√𝑊1𝐹1 0
0 √𝑊2𝐹2

⎞⎟
⎠

, ⃗𝑣 =
⎛⎜⎜⎜⎜⎜⎜
⎝

sin(Ψ1)
cos(Ψ1)
sin(Ψ2)
cos(Ψ2)

⎞⎟⎟⎟⎟⎟⎟
⎠

(7)
whereby

𝐹1/2 =
⎛⎜⎜⎜
⎝

√𝛽1/2 0
−𝛼1/2

1
√𝛽1/2

− 1
√𝛽1/2

⎞⎟⎟⎟
⎠

(8)

However, ⃗𝑉, in terms of R, ⃗𝑋, using Eqs. (1), (2) and the
definition c = cos , s = sin , can also be formulated as

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑢
𝑝𝑢
𝑣

𝑝𝑣

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

c 0 −𝑑s 𝑏s
0 c 𝑐s −𝑎s

𝑎s 𝑏s c 0
𝑐s 𝑑s 0 c

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑝𝑥
𝑦

𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

. (9)

The previous equation, when specialized to the one-turn
map, reads

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑝𝑥
𝑦

𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠𝑛

= ⃗𝑋𝑛 = ( 𝐼c 𝐷−1s
−𝐷s 𝐼c ) ( 𝐹1 0

0 𝐹2
) ⃗𝑆𝑛, (10)

with ⃗𝑣𝑛 being dependent on the turn number 𝑛:

⃗𝑆𝑛 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠1
𝑠2
𝑠3
𝑠4

⎞⎟⎟⎟⎟⎟⎟
⎠𝑛

=
⎛⎜⎜⎜⎜⎜⎜
⎝

sin(Ψ1 + 𝑛𝜇2)
cos(Ψ1 + 𝑛𝜇1)
sin(Ψ2 + 𝑛𝜇2)
cos(Ψ2 + 𝑛𝜇1)

⎞⎟⎟⎟⎟⎟⎟
⎠

. (11)

Here Ψ1, Ψ2 are phases determined by the initial condi-
tions, and 𝜇1, 𝜇2 are the phase advances per turn. In
the end, we have a problem mathematically formulated
in a way that may be solvable with ICA, as long as the
components 𝑠𝑖 are independent from each other. Writ-
ing out the matrices 𝐼, 𝐷, 𝐸 and 𝐹 and using abbreviations:
s1 ≡ √𝑊1 sin 𝜙, s2 ≡ √𝑊2 sin 𝜙, c1 ≡ √𝑊1 cos 𝜙, c2 ≡
√𝑊2 cos 𝜙 the product of the two matrices in Eq. (10) reads1

𝑀 ≡ 𝑅𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑐1√𝛽1 0 𝑠2√𝛽2 (𝑑 + 𝑏 𝛼2
𝛽2

) 𝑠2
𝑏

√𝛽2

−𝑐1
𝛼1

√𝛽1
−𝑐1

1
√𝛽1

−𝑠2√𝛽2 (𝑐 + 𝑎 𝛼2
𝛽2

) −𝑠2
𝑎

√𝛽2

−𝑠1√𝛽1 (𝑎 − 𝑏 𝛼1
𝛽1

) 𝑠1
𝑏

√𝛽1
𝑐2√𝛽2 0

−𝑠1√𝛽1 (𝑐 − 𝑑 𝛼1
𝛽1

) 𝑠1
𝑑

√𝛽1
−𝑐2

𝛼2
√𝛽2

−𝑐2
1

√𝛽2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(12)

Requirements to the Input Data for ICA
To apply ICA successfully, the source signals need to be

statistically independent from each other. This is equiva-
lent with the condition of the autocovariance matrix 𝐶 with
𝐶 = 𝑐𝑜𝑣( ⃗𝑆𝑛 ⃗𝑆𝑛) = 𝐸{ ⃗𝑆𝑛 ⃗𝑆𝑇

𝑛 } to be diagonal. As ICA is a
statistical tool, the results are the more reliable the larger the
measured data set is.
1 In the context of Eq. (12), 𝑠1 and 𝑠2 are temporarily used abbreviations

for sinus terms to arrange the formula more clearly. These abbreviations
are explicitly not the source signals.
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RECONSTRUCTION OF TENG
PARAMETERS

For our test we adopt the model of Eq. (10), in which
the quantity ⃗𝑋 is our observable measured at turn 𝑛. In this
model, the source signals 𝑠𝑖 with 𝑖 = 1, 2, 3, 4 are ”statis-
tically independent”, as long as 𝜇1 ≠ 𝜇2 and for a large
enough number of turns 𝑁 aquired. We perform a test case in
which we consider the independent signals ⃗𝑆 as in Eq. (11),
which represent the uncoupled motion. The ”mixed signals”

⃗𝑋, which result from measurements, are instead obtained
from Eq. (10), respectively Eq. (12), in consistency with the
general ICA approach of ⃗𝑋 = 𝑀 ⃗𝑆. The parameter values
used for the test case’s one turn map are displayed in Table 1
(column ”orig”). The choice of the initial phases Ψ1 and Ψ2
in Eq. (11) is related to the initial condition of the test parti-
cle, which in this test do not play a significant role. From
here, we will notate a quantity 𝑂 as 𝑂′ when reconstructed
by the ICA algorithm. Applying the ICA algorithm on ⃗𝑋𝑛,
we expect to be able to reconstruct ⃗𝑆′

𝑛 and 𝑀′ via

⃗𝑆′
𝑛 = 𝑀′−1 ⃗𝑋𝑛. (13)

To perform the test we consider 𝑁 = 3 × 105 turns and
we choose a FASTICA algorithm as described in [4], which
shows high performance while allowing economical hard-
ware utilization. This algorithm maximizes the indepen-
dency of 𝑠′

𝑗 (𝑗 = 1,2,3,4) to one another, and at the same time
forms a Matrix 𝑀′, so that Eq. (13) holds.

Dealing with the Ambiguities, Mapping
The ICA ambiguity of scaling can easily be solved,

knowing that the maxima of the 𝑠′
𝑗 have a value of 1

(see Eq. (11)). We can therefore set rescaling factors
𝑓𝑗 = 1

|max(𝑠′
𝑗)|

.

The rescaling also needs to be applied to the correspond-
ing rows of 𝑀′. To know, which are the corresponding rows
we need to resolve the permutation ambiguity of ICA in the
next step, identifying what is the permutation responsible
of swapping the ordering of the components of ⃗𝑆′ in com-
parison to the components of ⃗𝑆. Due to intrinsic properties
of ICA, it does not necessarily mean that 𝑠′

𝑗 corresponds to
𝑠𝑖 when 𝑖 = 𝑗. This means that a permutation-mapping of
the original signals 𝑠𝑖 to the corresponding reconstructed
signals 𝑠′

𝑗 has to be found. We find this correspondence
by using the method of cross-correlation based on [5] to
evaluate the pair-wise similarity of each possible set of orig-
inal signals 𝑠𝑖 and reconstructed signals ±𝑠′

𝑗 . We pick the
pairs with the best matches, including the sign, and so we
identify the permutation matrix 𝑀𝑝 so that ⃗𝑆′ = 𝑀𝑝 ⃗𝑆, which
also resolves the ambiguity of the sign issue. At this point,
𝑀𝑝 and the factors 𝑓𝑗 can be applied to the corresponding
rows of the reconstructed matrix 𝑀′ to eliminate the am-
biguities. We define a matrix 𝑀𝑝𝑓 as the component-wise
product of the permutation matrix 𝑀𝑝 of and the inverse
of 𝑓𝑗: (𝑀𝑝𝑓)𝑗𝑚 ≡ 1

𝑓𝑗
(𝑀𝑝)𝑗𝑚, where the index 𝑚 notates the

columns of the matrix. We call 𝑀′
𝑝𝑓 = 𝑀𝑝𝑓 𝑀′ the rescaled

and repermutated version of 𝑀′.

Final Reconstruction
With the permutation, sign and scaling problems solved,

we can proceed, undoing the changes that the preparation
step of whitening did to the turn-by-turn ”measured” coordi-
nates ⃗𝑋𝑛. Hence the reconstructed map 𝑀𝑟𝑒𝑐 = 𝑀𝑤ℎ

−1 𝑀′
𝑝𝑓

is retrieved. Once 𝑀𝑟𝑒𝑐 is calculated, the parameters 𝛼1, 𝛼2,
𝛽1, 𝛽2, 𝑊1, 𝑊2, 𝑎, 𝑏, 𝑐 and 𝑑 can be retrieved by a system
of equations with the help of Eq. (12), setting 𝑀𝑟𝑒𝑐

!= 𝑀.
The reconstruction results for the test example we discuss
here are shown in Table 1, also displaying the relative error
Δ𝑟𝑒𝑙 = [(⋅)𝑟𝑒𝑐 − (⋅)𝑜𝑟𝑖𝑔]/(⋅)𝑜𝑟𝑖𝑔 .

Table 1: Reconstruction Results, Simulated for 𝑁 = 3 ×
105 Turns And 𝜙 = 0.10258, Ψ1 = 2.0, Ψ2 = 0.1,
𝜇1 = 0.36398, 𝜇2 = 0.25314

Parameter orig rec Δ𝑟𝑒𝑙

𝛼1 1.8739 1.8721 9.6173e-04
𝛼2 0.2636 0.2675 0.0148
𝛽1 16.8490 16.8363 7.5163e-04
𝛽2 13.6740 13.6870 9.4830e-04
𝑊1 0.5000 0.5000 3.5659e-05
𝑊2 0.9000 0.9000 1.1916e-05
𝑎 1.4313 1.4317 2.5042e-04
𝑏 4.5003 4.4644 0.0080
𝑐 -0.0093 -0.0093 5.0225e-04
𝑑 0.6694 0.6695 1.2004e-04

The results of Table 1 shows that the method is able to pro-
vide reconstructed parameters with a deviation from the
original input values between 1.48% or less for the example
discussed here.

CONCLUSION
As the Edwards-Teng-Parameterization leads to a natural

formulation of the dynamics formally equivalent to that of an
ICA algorithm, we have explored the possibility of using ICA
for retrieving the Teng’s parameters. The known structure of
the parameterization allows to retrieve the Teng Parameters
out of the reconstructed mixing matrix 𝑀 with good accuracy
for the example discussed. The reconstruction is, however,
only possible when a successfull mapping of original and
reconstructed signals is achieved solving the ICA intrinsinc
ambiguities. We leave to future studies the investigation
of the influence of the number of turns 𝑁 needed and the
performance of the algorithm with different values for 𝜇1
and 𝜇2.
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