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Abstract
Light source facilities usually operate about 5000 hours

per year to support multiple beamline operations. Relia-
bility is a key parameter in such user facilities to evaluate
machine performance. Some facilities have achieved more
than 95% beam reliability. However, there are still many
hours of unplanned beam downtime and every hour lost is a
waste of operational costs. Beam downtime also interrupts
the completion of scheduled user experiments. Preventive
maintenance of subsystems and quick recovery from down-
times are the basic strategics to improve reliability. Current
recovery incorporates significant human diagnosis efforts.
To circumvent this problem of unprecedented downtimes
requiring recuperation, we take steps to build solutions that
can detect anomalous conditions caused by faulty subsys-
tems. In this paper, we share our findings from an initial
assessment of production logs and provide an overview of
some potential future directions.

BACKGROUND
Accelerator facilities experience beam degradation or

complete beam dumps due to subsystem faults such as RF
(Radio-Frequency) system trips, power supply faults etc.
Degradation implies poor beam performance not leading to
downtime, while beam dump indicates machine downtime.
Besides wastage of operational costs associated with down-
times, beam dumps also disrupt scheduled user experiments.
The Mean Time To Recover (MTTR) from a failure usually
ranges between one to a few hours. For example, in 2018,
the MTTR for NSLS-II was 1.5 hours. The MTTR includes
the time needed in diagnosing failure causes, repairing the
faulty devices, and setting the system back to the standard
operational state. Efficient recovery requires better under-
standing of the system health based on the archived and
real-time measurements, in a timely manner.

A light source facility may archive more than 100,000
measured signals (referred to as process variables, or PVs).
Currently, fault diagnosis is done manually by the system
managers or operation specialists as they analyze the oper-
ation history data prior to the observed faults. This can be
time-consuming, as the hints to the root cause can be buried
amongst hundreds of PVs related to the affected subsystem

∗ anwesha@slac.stanford.edu
† gwang@bnl.gov

and it demands the subsystem specialists to be available
for diagnosis any time such faults appear. Efficient automa-
tion of failure detection can greatly reduce the recovery
time and ease the burden on professional staff. We seek to
leverage this high dimensional parameter space of irregu-
lar time-series data for anomaly detection using principles
of statistics and machine learning (ML). Data labeling is
cumbersome as found in recent studies [1]. Moreover, super-
vised methods are becoming less applicable in facilities with
limited or no ground truth [2]. Keeping in mind the need for
both efficiency and correctness, we analyze PVs associated
with a few subsystems and describe our observations. The
derived insights can be helpful in designing unsupervised
methods for fault detection.

FAULT ANALYSIS
We identify days with reported subsystem or device faults

and downtimes. Days with no reported faults or downtimes
are considered healthy time-frames. In the discussed plots,
x-axis corresponds to the timesteps and y-axis to the signal
observations, unless otherwise mentioned.

For a specific power supply, Figs. 1 and 2 show the trends
of two PVs namely, magnet temperature and output voltage.
As seen in Fig. 1, before the power supply tripped there
is a drop in magnet temperature. The variation in voltage
is comparatively less distinguishable between anomalous
and healthy times. We observe similar difference in PV
variations for other subsystems as well. Several PVs of a
specific device may not exhibit helpful trends to aid anomaly
detection. It is imperative to choose a suitable set of PVs
indicative of anomaly, and ensure that helpful signal pat-
terns do not get obscured during any multivariate analysis
performed to represent device state.

Figure 1: P-Supply (fault). Figure 2: P-Supply (no-fault).
We analyze water system cracks that do not immediately

affect beam performance, but eventually cause beam dump
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Figure 3: W-Supply (FM1). Figure 4: W-Supply (FM1). Figure 5: W-Supply (FM4). Figure 6: W-Supply (FM4).

Figure 7: Current Dip. Figure 8: Downtime. Figure 9: Steady Current.

due to monitoring by the Equipment Protection System
(EPS). Pump leaks are eventually fixed by operators for
healthy machine performance. These water cells with mul-
tiple flow-meters are part of the EPS, all of which do not
show similar variations during healthy and faulty times.

Figures 3 to 6 show two signals of a specific water system
that faulted leading to a beam dump. Figures 3 and 4 relate to
flow-meter FM1 that did not deviate much around the faulty
time compared to its healthy counterpart. However, flow-
meter FM4 reveals dips and spikes (Fig. 5) around the faulty
time-window relative to its normal signal behaviour (Fig. 6)
indicating anomalous state that could eventually hurt the EPS
causing downtime. The overall range of FM1 PV values (≈ 1)
is generally lower than FM4 (≈ 3) for different subsystems.
We notice that, besides identifying the anomaly indicative
PVs, the statistical metric of variation can be different in
diverse subsystems or its related signals. This means, while
higher temporal variance can be anomaly indicative in a
specific PV, a few drops to zeroes or spikes to higher values
without significant difference in variance can relate to fault in
another PV. These fault-based signatures are inferred based
on the observed healthy trends of the corresponding PVs.
ML-based model require data that do not result in too many
false positives or false negatives. In our examples, signals
such as output voltage of power supply or FM1 of water
system may lead to detection errors, for which subsystem-
level PV analysis can be helpful before building a generic
fault detector.

Beam Performance
The signals used for beam quality assessment are broadly

similar but not entirely the same in different facilities. Some
subsystem faults show tangible impacts on the beam, others
do not. Beam current is often monitored in storage rings to
examine anomalous beam dumps. We study the correlation
of beam current with a few studied subsystem faults, not
analyzed in some prior studies [3].

Figure 7 shows a dip in beam current. This dip correlates
with a downtime that lasted over 3 hours, related to a faulty
water system. In this case, the faulty subsystem lead to a
complete beam dump, however there is no early indication
of anomaly in the beam current before downtime, to aid
preventive maintenance. Figure 8 shows another case of
downtime that lasted for several hours comprising of down-
time and recovery related to a pump leak. The beam current
sharply drops to zero and stays there for a long time. Cur-
rent usually remains steady or drops to zero, unlike energy
or intensity-related signals that show gradual variations in-
dicating degraded beam quality. Hence, in the absence of
signals having temporal variations (e.g., energy, frequency)
subsystem-related signals showing prior trends before fault
manifestation is necessary for prediction. Faults not leading
to downtimes is expected to show weak correlation with
beam quality. In the absence of sustained temporal fluctua-
tions (e.g., temperature in Fig. 1) forecasting is difficult, as
opposed to classification [4] or post-mortem analysis. Beam
current may not be very helpful in that case. Figure 9 shows
beam current values during normal machine operation with
no reported faults or downtimes. In this case, we expect
current to be mostly steady with minor deviations.

Both signal correlations within a subsystem and their
relationship with the beam quality can be considered for fault
detection. A signal when examined with other signals can
become a differentiator at times, in contrast to independent
consideration. For example, we notice that the co-existence
of a jittery signal related to current frequency with sporadic
degradation of beam intensity can indicate a faulty station.
Predicting such faulty stations not causing downtimes yet,
can be helpful for preventive maintenance. However, if
such jitters do not correlate with beam intensity most of the
times or lead to faults, the related short-lived jitters can be
considered non-critical.
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Signal Combination
We identify certain RF system faults that show variation

in measurements prior to trips. Each subsystem has a differ-
ent set of signals associated with it. In order to form a single
representative signal for a specific device that can help in
distinguishing anomalous and healthy times, we apply the
copula-based approach [5] from statistics. The idea is to
first learn the most suitable univariate distribution of each
considered signal, from which its marginal distribution is
then estimated. A copula function then learns the multi-
variate joint distribution (i.e., CDF; cumulative distribution
function) based on correlations between individual marginal
distributions of each signal. From the obtained joint distribu-
tion, new data can be estimated. This many to one mapped
time-series can then be used for subsystem fault modeling.

Let us consider an RF system A, with just 5 PVs from its
set of signals. For a 5-dimensional joint CDF F, we have:

𝐹(𝑃𝑉1, … , 𝑃𝑉5) = 𝐶[𝐹1(𝑃𝑉1), … , 𝐹5(𝑃𝑉5)]. (1)

A copula function C exists [Eq.( 1)] for univariate marginals
𝐹1 to 𝐹5 related to 5 PVs. If F is a multivariate normal
distribution, it is called a Gaussian copula.

Figure 10: Fault (5 PVs).

Figure 11: No Fault (5 PVs).

Figures 10 and 11 show the difference in CDF estimates
during faulty and healthy times. In the plots, x-axis indicates
the obtained values after joint modeling of univariates, and
y-axis represents the frequency or number of observations
corresponding to the values on x-axis, for device A. Real
implies original data, and Synthetic implies the sampled data
estimated from the derived joint distribution. The differ-
ence in distribution is discernible with lower range of values

(≈ 0.16 vs. ≈ 0.8) during healthy times (Fig. 11) and higher
peaks observed during faulty times (Fig. 10). For some cases,
the vice-versa is observed as well, i.e., healthy times with
higher peaks over faulty times. Both cases can aid anomaly
detection as long as healthy and faulty times are recogniz-
able. This is one possible way of handling subsystem signals
prior to training a suitable ML-model.

Well known approaches like PCA (principal component
analysis) [6] also approximate the behaviour using a mul-
tivariate joint distribution for linear correlations. Copulas
have been shown to work for certain non-linear correlations
as well [5]. However, it is possible to lose signal information
post joint modeling based on the scale and irregularity of
time-series. We are currently examining univariate models
and the potential limitations of joint modeling by analyz-
ing more subsystems from different facilities. Future work
comprises of devising ML-models for training and inference
based on the transformed subsystem signals.

CONCLUSION
We present some preliminary findings from our studies

on subsystem faults. Univariate trends between anomalous
and healthy times can be similar, with no early fault indica-
tions. A suitable subset of signals pertaining to a specific
subsystem needs to be identified for low detection errors.
The distinct pattern or statistical metric indicating degrad-
ing health can vary across subsystems of same type (e.g.,
power supply Q vs. S) or different types (e.g., water system
vs. power supply). A generic fault detector needs to ac-
count for this diversity. Multivariate correlations with their
relationship with beam quality has the potential to reveal
faulty subsystems. Copula-based approach works to a cer-
tain extent in providing a unified view of subsystem state
in identifying anomalous conditions. Further studies are
necessary for determining suitable methods that can work
robustly for ML-based detection. Power supply trips causing
downtimes may not have temporal patterns ahead of time to
aid prediction. RF system drifts exhibiting beam instabilities
has the potential to provide early indicators for fault predic-
tion. The feasibility of prediction depends on the nature of
subsystems and fault manifestation, subject to future work.
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