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Abstract
The dynamic aperture (DA) is an important concept in

the study of nonlinear beam dynamics. Several analytical
models used to describe the evolution of DA as a function
of time, and to extrapolate to realistic time scales that would
not be reachable otherwise due to computational limitations,
have been successfully developed. Even though these models
have been quite successful in the past, the fitting procedure
is rather sensitive to several details. Machine Learning (ML)
techniques, which have been around for decades and have
matured into powerful tools ever since, carry the potential
to address some of these challenges. In this paper, two
applications of ML approaches are presented and discussed
in detail. Firstly, ML has been used to efficiently detect
outliers in the DA computations. Secondly, ML techniques
have been applied to improve the fitting procedures of the
DA models, thus improving their predictive power.

INTRODUCTION
Machine Learning (ML) is the process of building a data-

driven mathematical model to make predictions or decisions
without being explicitly programmed [1]. Following the
successful use in high-energy physics [2], ML techniques
were also introduced in accelerator physics. Beam diagnos-
tics and beam control systems were among the first domains
in which ML applications were applied [3, 4], and recently,
substantial progress has been made (see [5–12] for a sample
of recent applications of ML to accelerator physics topics).

At CERNs Large Hadron Collider (LHC) [13], the inher-
ent complexity in terms of number of hardware systems,
amount of data collected and available for on-line or off-line
analyses, variety of beam dynamics configurations, such
as optical configurations, and beam dynamics phenomena,
make it ideal for ML applications (see [14] for an overview
of recent results). The focus of this paper is the application
of ML to Dynamic Aperture (DA). DA is the extent of the
simply-connected region of phase space in which the parti-
cle’s motion remains bounded over a finite number of turns.
Such a volume is shaped by, amongst others, the nonlinear
imperfections in the magnetic fields.

As detailed knowledge of the magnetic field errors is diffi-
cult to gather, the DA is computed for various realisations of
the error distributions. Then, the distribution of DA values
needs to be carefully analysed, in particular taking poten-
tial outliers into account. ML techniques can be used to
∗ Work supported by the HL-LHC Project
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automatise the detection of the latter. Another hurdle to
overcome in the numerical evaluation of the DA is the huge
amount of CPU time required to estimate it accurately for a
realistic time scale. Apart from using distributed computing
systems [15], a key approach to tackle this issue uses analyt-
ical scaling laws based on general theorems of dynamical
systems theory [16], which depend on a limited number of
parameters (two or three). This allows to use the results
of numerical simulations to evaluate the parameters in the
scaling laws to extrapolate the DA for a much larger number
of turns. ML techniques can be used to obtain robust and
reliable parameter estimates in view of using such models for
extrapolation purposes, and will be essential for the on-going
studies for the HL-LHC Project [17] and the Future Circular
Collider (FCC). The models use the following equations to
describe the time dependence of the DA:
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where 𝜌∗, 𝜅, 𝑁0 are the model parameters (see [16] for a
derivation of these models and the meaning of the param-
eters) and 𝒲−1 is the negative real branch of the Lambert
function. From the original version of the Nekhoroshev the-
orem [18], there exists an estimate for 𝑁0, which implies we
can devise two variants of the model, one with three and one
with only two parameters, namely 𝜌∗ and 𝜅.

OUTLIER IDENTIFICATION IN DA
SIMULATIONS

For a given angle in the transverse plane, the stable am-
plitude may differ considerably from seed to seed, creating
a spread in estimated DA values. The two variables that
are of particular relevance are DAav (the DA integrated over
angles and averaged over seeds), and DAmin (the minimum
over angles and seeds). While the former is a rather robust
quantity, it is clear that the latter might be strongly impacted
by existing outliers. These may be due to the excitation of
particular resonances as a result of the distribution of nonlin-
ear magnetic errors, which is highly seed-dependent. These
low DA values are not necessarily a physical representation
of the machine performance, as in reality the operational
conditions would be steered away from these. For this rea-
son, it is considered appropriate to remove these outliers
from the analysis.
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Outlier detection is done on an angle-by-angle basis. The
set of stable amplitudes 𝑟𝑖,𝑗 for a given angle 𝑗 over the dif-
ferent seeds 𝑖, is re-scaled to lie in the interval [0,1]. This
ensures that the detection is done in a consistent way for the
different angles. Several ML approaches were investigated.
In the supervised learning approach, the detection is treated
as a classification problem, and a Support Vector Machine
(SVM) algorithm [19] is used to discriminate between nor-
mal and abnormal points. The Radial Basis Function (RBF)
kernel [20] with a penalty factor 𝐶 = 1 were identified as
the best hyperparameters for the SVM model.

Two unsupervised learning (UL) approaches were also
considered: Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [21] and the Local Outlier
Factor (LOF) [22] method. In both approaches, 75 % of the
data set was used for training and 25 % was used for vali-
dation. For the DBSCAN method, the maximum distance
between two samples for one to be in the neighbourhood of
the other is set to 1, and the minimum number of samples in
a neighbourhood for a point to be considered a core point,
including the point itself, is set to 3. For LOF, the number
of neighbours used to measure the local deviation of density
of a given sample with respect to the same neighbours is
set to 58, and the contamination (the expected fraction of
outliers in the data set) is set to 0.001.

Figure 1: Results from outlier detection using SVM, DB-
SCAN, LOF, a binary OR between DBSCAN and LOF, and
post-processing following DBSCAN methods.

A comparison between the performance of the SVM,
DBSCAN, and LOF algorithms trained using the scikit-
learn [23] implementation is shown in Fig. 1, listing the
number of true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN). The labels determined
by the DBSCAN and LOF algorithms were also combined
through a binary OR operation to produce a fourth set of
labels. While FN are to be avoided as much as possible, as
they represent outliers that are missed by the algorithm, too
many FP are not desirable either, as they represent regular
points that are wrongly flagged as outliers. The latter re-
quires a lot of manual intervention to un-flag these points,
defeating the purpose of automatising the outlier detection.
As it can be seen in Fig. 1, SVM has the lowest number of
FN, but at the expense of an unacceptably high amount of
FP (ten times more than the other methods). Even though

the other methods still achieve low amounts of FN, it would
still be desirable to lower their rate of FP.

For this reason, a fifth set of labels is created following
an initial labelling by DBSCAN by removing FP through a
statistical method to determine whether this approach would
add to the robustness of the original prediction. For a point
originally flagged by DBSCAN as an outlier to be considered
a true outlier, three additional criteria should be fulfilled: the
distance from the mean should be > 3 𝜎 (mean and standard
deviation calculated over the points not flagged as outliers);
the distance to the nearest non-outlier point should be > 0.15
in absolute units and > 34 % of the total spread of the non-
outlier points. See Fig. 2 for an example DA result where
the post-processing correctly removes an FP.

Figure 2: Top row: DA simulations for two LHC config-
urations (markers represent the 60 seeds). Left: Example
with two outliers correctly flagged (green). Right: Example
of a false positive (red). Bottom row: idem, but after post-
processing, showing the improvement in outlier detection.

FITTING THE DA AS A FUNCTION OF
NUMBER OF TURNS

Another domain where ML techniques were applied is the
modelling of DA as a function of turn number. The scaling
laws introduced earlier would allow for predictions of the
DA for 𝑁 ≫ 𝑁max that would be inaccessible to numerical
simulations due to the computing time needed (see [16],
where the extrapolation error has been considered as a key
figure of merit to qualify the DA models).

As ML is not well-suited to extrapolation problems, a
different strategy is used, which consists in training a Gaus-
sian Process (GP) [24] on the DA evolution data to generate
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synthetic, though realistic, interpolated points to increase
the density of points used to fit the model.

Six DA simulations were performed for the LHC at injec-
tion energy up to 107 turns to probe the prediction power of
the DA model. This is done by setting the value of 𝑁max used
to fit the DA model, then using the model to extrapolate the
DA up to 107 turns, and finally computing the mean squared
error (MSE) over the full set of numerical data. All this
is repeated, varying 𝑁max. The same procedure is applied
when the GP is used to improve the quality of the DA model.
In this case, 75 synthetic points are uniformly distributed
between 104 ≤ 𝑁 ≤ 𝑁max when 𝑁max = 5 × 105, and the
number of synthetic points is increased up to 750 as 𝑁max
increases up to 5 × 106. The synthetic points are disregarded
when computing the MSE for the GP-based fit, ensuring a
fair comparison between the original and GP-based fits. Note
that the GP analysis is repeated 200 times and the minimum
MSE over the 200 iterations is used.
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Figure 3: The MSE as a function of 𝑁max of the DA model
fit (1b) for the original and the fit including GP-generated
synthetic points. Shown here is the fit with two parameters;
the results for the three-parameter fit are very similar.

The results of the two-parameter fit are shown in Fig. 3.
The MSE for the GP-based fit is always better than that of
the original fit. Some saturation in the decrease of the MSE
is visible for 𝑁max ≈ 2 − 5 × 106 for the three-parameter fit,
indicating that the simulations performed up until any of the
turn numbers in that interval allow a good extrapolation up
to 107 turns. The GP is more efficient in improving the two-
than the three-parameter fit, as the MSE for 𝑁max = 5 × 106

is reduced from 1.7 × 10−2 (original fit) to 4.5 × 10−3 (GP
fit) for the two-parameter case (74 % reduction), and from
8.5 × 10−3 (original fit) to 5.8 × 10−3 (GP fit) for the three-
parameter case (32 % reduction).

The behaviour of the ML-based method was also probed
on a large set of DA simulations: 3090 cases of the LHC at
injection energy for various configurations of the Landau
octupole strength and linear chromaticity. The fits were per-
formed with 𝑁max = 1×105 and then extrapolating the fitted
function up to 106 turns and evaluating the MSE and the
difference in MSE, i.e. ΔMSE = MSEoriginalfit − MSEGPfit
(see Fig. 4). Whenever the GP is used, 50 iterations were
applied (a trade-off between the improvement achieved by
the iterations of the GP and CPU-time).
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Figure 4: Left column: MSE distribution for the DA
model (1b) fit with three parameters (top), after applying 50
times a GP to the DA numerical data (middle), and ΔMSE
for the two approaches (bottom). Right column: Same, but
for two parameter model.

Globally, the three-parameter fit MSE is smaller than that
of the two-parameter fit, and the fit with GP has a better
performance in terms of MSE than the original one, and
is visible for both the two- and three-parameter fits. The
positive part of the distribution of ΔMSE shows how many
DA simulations were improved through the GP fit, whereas
the negative part shows cases in which the GP fit has de-
graded the DA model. Although this degradation occured
for some DA simulations, it is worth mentioning that this
set corresponds only to 13 % and 8 % for the three- and two-
parameter fits, respectively. Furthermore, this is likely to
improve when using more than 50 GP iterations. It should be
finally stressed that this does not represent a real degradation
of the result (as one can choose to keep the original fit).

CONCLUSIONS

This paper presented results of ML techniques applied to
the analysis of nonlinear beam dynamics in the LHC, namely
outlier detection in dynamic aperture simulations, and the
improvement of the DA models fitted to simulation data. In
both cases, the ML techniques prove to be a good approach to
improve existing tools. Outliers can be effectively identified
and rejected, while analysis of DA evolution with the number
of turns also showed considerable improvement by using a
Gaussian Process to add synthetic data to simulations. This
improves considerably the reliability of fits of models for DA
evolution, and aids in the extrapolation of such simulations
to timescales relevant to collider operation.
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