Author: Shabalina, A.D.
Paper Title Page
TUPAB333 Status of PIP-II 650 MHz Prototype Dressed Cavity Qualification 2279
 
  • G.V. Eremeev, D.J. Bice, C. Boffo, S.K. Chandrasekaran, S. Cheban, F. Furuta, I.V. Gonin, C.J. Grimm, S. Kazakov, T.N. Khabiboulline, A. Lunin, M. Martinello, N. Nigam, J.P. Ozelis, Y.M. Pischalnikov, K.S. Premo, O.V. Prokofiev, O.V. Pronitchev, G.V. Romanov, N. Solyak, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, Illinois, USA
  • M. Bagre, V. Jain, A. Puntambekar, S. Raghvendra, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • P. Bhattacharyya, S. Ghosh, S. Seth
    VECC, Kolkata, India
  • R. Kumar
    BARC, Mumbai, India
  • J. Lewis, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Pagani, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • T. Reid
    ANL, Lemont, Illinois, USA
  • A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Low-beta and high-beta sec­tions of PIP-II linac will use nine low-beta cry­omod­ules with four cav­i­ties each and four high-beta cry­omod­ules with six cav­i­ties each. These cav­i­ties will be pro­duced and qual­i­fied in col­lab­o­ra­tion be­tween Fer­mi­lab and the in­ter­na­tional part­ner labs. Prior to their in­stal­la­tion into pro­to­type cry­omod­ules, sev­eral dressed cav­i­ties, which in­clude jack­eted cav­i­ties, high power cou­plers, and tuners, will be qual­i­fied in STC hor­i­zon­tal test bed at Fer­mi­lab. After qual­i­fi­ca­tion of bare β = 0.9 cav­i­ties at Fer­mi­lab, sev­eral pre-pro­duc­tion β = 0.92 and β = 0.61 cav­i­ties have been and are being fab­ri­cated and qual­i­fied. Pro­cure­ments have also been started for high power cou­plers and tuners. In this con­tri­bu­tion we pre­sent the cur­rent sta­tus of pro­to­type dressed cav­ity qual­i­fi­ca­tion for PIP-II.
 
poster icon Poster TUPAB333 [6.247 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB333  
About • paper received ※ 23 May 2021       paper accepted ※ 19 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC01 Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning at Jefferson Laboratory 4535
 
  • C. Tennant, A. Carpenter, T. Powers, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
  • K.M. Iftekharuddin, M. Rahman
    ODU, Norfolk, Virginia, USA
  • A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177.
We re­port on the de­vel­op­ment of ma­chine learn­ing mod­els for clas­si­fy­ing C100 su­per­con­duct­ing ra­diofre­quency (SRF) cav­ity faults in the Con­tin­u­ous Elec­tron Beam Ac­cel­er­a­tor Fa­cil­ity (CEBAF) at Jef­fer­son Lab. Of the 418 SRF cav­i­ties in CEBAF, 96 are de­signed with a dig­i­tal low-level RF sys­tem con­fig­ured such that a cav­ity fault trig­gers record­ings of RF sig­nals for each of eight cav­i­ties in the cry­omod­ule. Sub­ject mat­ter ex­perts an­a­lyze the col­lected time-se­ries data and iden­tify which of the eight cav­i­ties faulted first and clas­sify the type of fault. This in­for­ma­tion is used to find trends and strate­gi­cally de­ploy mit­i­ga­tions to prob­lem­atic cry­omod­ules. How­ever, man­u­ally la­bel­ing the data is la­bo­ri­ous and time-con­sum­ing. By lever­ag­ing ma­chine learn­ing, near real-time - rather than post­mortem - iden­ti­fi­ca­tion of the of­fend­ing cav­ity and clas­si­fi­ca­tion of the fault type has been im­ple­mented. We dis­cuss the per­for­mance of the ma­chine learn­ing mod­els dur­ing a re­cent physics run. We also dis­cuss ef­forts for fur­ther in­sights into fault types through un­su­per­vised learn­ing tech­niques and pre­sent pre­lim­i­nary work on cav­ity and fault pre­dic­tion using data col­lected prior to a fail­ure event.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC01  
About • paper received ※ 16 May 2021       paper accepted ※ 01 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)