Author: Potylitsyn, A.
Paper Title Page
TUPAB283 Feasibility Study of ChDR Diagnostic Device in the LHC 2139
 
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
  • M. Bergamaschi, M. Krupa, K. Łasocha, T. Lefèvre, S. Mazzoni, N. Mounet, E. Senes
    CERN, Geneva, Switzerland
  • D.M. Harryman
    JAI, Egham, Surrey, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • A. Potylitsyn
    TPU, Tomsk, Russia
  • A. Schloegelhofer
    TU Vienna, Wien, Austria
 
  In re­cent years Cherenkov Dif­frac­tion Ra­di­a­tion (ChDR) has been re­ported as a phe­nom­e­non suit­able for var­i­ous types of par­ti­cle ac­cel­er­a­tor di­ag­nos­tics. As it would typ­i­cally work best for highly rel­a­tivis­tic beam, past stud­ies and ex­per­i­ments have been mostly fo­cus­ing on the lep­ton ma­chines. This con­tri­bu­tion in­ves­ti­gates the prospects on the uti­liza­tion of ChDR as a di­ag­nos­tic tool for the Large Hadron Col­lider (LHC). Based on the­o­ret­i­cal con­sid­er­a­tions and sim­u­la­tion re­sults we es­ti­mate the prop­er­ties of the ex­pected ra­di­a­tion, both in the in­co­her­ent and co­her­ent do­main, and we com­pare them with the re­quire­ments of the ex­ist­ing di­ag­nos­tic sys­tems. We also ad­dress the po­ten­tial prob­lem of the use of di­elec­tric ra­di­a­tors in cir­cu­lar ma­chines, where sec­ondary elec­trons could po­ten­tially lead to the cre­ation of elec­tron clouds in­side the beam pipe that may af­fect the ra­di­a­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB283  
About • paper received ※ 14 May 2021       paper accepted ※ 18 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC02
Non Invasive Bunch Length Measurements Exploiting Cherenkov Diffraction Radiation  
 
  • S. Mazzoni, M. Bergamaschi, R. Corsini, A. Curcio, W. Farabolini, D. Gamba, L. Garolfi, A. Gilardi, R. Kieffer, M. Krupa, T. Lefèvre, E. Senes, M. Wendt
    CERN, Geneva, Switzerland
  • A. Curcio
    NSRC SOLARIS, Kraków, Poland
  • C. Davut, G.X. Xia
    UMAN, Manchester, United Kingdom
  • W. Farabolini
    CEA-DRF-IRFU, France
  • K.V. Fedorov, P. Karataev, K. Lekomtsev, C. Pakuza
    JAI, Oxford, United Kingdom
  • K.V. Fedorov, A. Potylitsyn
    TPU, Tomsk, Russia
  • J. Gardelle
    CEA, LE BARP cedex, France
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Schloegelhofer
    TU Vienna, Wien, Austria
  • E. Senes
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  Cherenkov Dif­frac­tion Ra­di­a­tion (ChDR) refers to the emis­sion of broad­band elec­tro­mag­netic ra­di­a­tion which oc­curs when a charged par­ti­cle prop­a­gates at rel­a­tivis­tic speed in the vicin­ity of a di­elec­tric ma­te­r­ial. At vari­ance with the bet­ter-known Cherenkov ra­di­a­tion, ChDR is a non-in­va­sive tech­nique, that is the par­ti­cle beam does not im­pinge on the di­elec­tric ra­di­a­tor. ChDR also pos­sesses other in­ter­est­ing fea­tures like a rel­a­tively high light yield, a broad­band spec­trum of emis­sion and the emis­sion at a rel­a­tively large angle with re­spect to the beam tra­jec­tory. Due to its po­ten­tial, CERN ini­ti­ated over the last few years sev­eral stud­ies on ChDR-based di­ag­nos­tics tech­niques. In this con­tri­bu­tion I will focus on the ex­ploita­tion of ChDR for non-in­va­sive bunch length mea­sure­ment, from proof of prin­ci­ple tests per­formed at the CLEAR fa­cil­ity at CERN and CLARA at Dares­bury lab­o­ra­tory to cur­rent de­vel­op­ments for ex­per­i­ments and fa­cil­i­ties such as AWAKE and FCC  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)